
Planning, Scheduling and Monitoring for Airport Surface Operations

Robert Morris1 Corina Pasareanu2 Kasper Luckow3 Waqar Malik4 Hang Ma5 K. Satish Kumar7 Sven Koenig8

Abstract— This paper explores the problem of managing

movements of aircraft along the surface of busy airports.

Airport surface management is a complex logistics problem

involving the coordination of humans and machines. The

work described here arose from the idea that autonomous

towing vehicles for taxiing aircraft could offer a solution

to the ’capacity problem’ for busy airports, the problem

of getting more efficient use of existing surface area to

meet increasing demand. Supporting autonomous surface

operations requires continuous planning, scheduling and

monitoring of operations, as well as systems for optimizing

complex human-machine interaction. We identify a set of

computational subproblems of the surface management

problem that would benefit from recent advances in multi-

agent planning and scheduling and probabilistic predictive

modeling, and discuss preliminary work at integrating

these components into a prototype of a surface manage-

ment system.

I. BACKGROUND AND MOTIVATION

Congestion at airports is recognized as one of the
most prominent problem areas in the international com-
mercial airspace. In particular, increasing the capacity
of surface area used for taxiing is a major logistical
challenge. The normal approach to increasing capacity
by expanding the surface area used for taxiing has a
number of problems, including harmful impact to the
environment (increased noise and pollution) as well as
adding to human workload and increasing the overall
complexity of operations. These difficulties of increasing

This work was supported by grants from NASA and the Air Force
Research Lab (AFRL). This work was conducted as part of a combined
effort with Northrop Grumman Corporation (NGC).

1 Robert Morris is a researcher at NASA Ames Research Center
robert.a.morris@nasa.gov

2 Corina Pasareanu is a researcher at NASA Ames and Carnegie
Mellon University corina.s.pasareanu@nasa.gov

3 Kasper Luckow is a postdoctoral researcher at Carnegie Mellon
University kasper.luckow@sv.cmu.edu

4 Waqar Malik is a research scientist at the University
Affiliated Research Center, Moffett Field, CA 95035.
waqarmalik@gmail.com

5 Hang Ma is a PhD student at the University of Southern California
hangma@usc.edu

6 T. K. Satish Kumar is a Research Scientist in the Com-
puter Science Department at the University of Southern California
tkskwork@gmail.com

7 Sven Koenig is a professor at the University of Southern Califor-
nia skoenig@usc.edu

capacity through airport expansion motivate the search
for solutions that make more efficient use of existing
space rather than creating new space. Automated tools
on the ground or in the control tower are being ma-
tured and integrated into decision support systems. At
the same time, NASA and other government agencies
are encouraging the development of ’game changing’
technologies for radically transforming future airspace
operations.

In the spirit of ’changing the game’, we envision a
future in which automated surface movement manage-
ment in the control tower is combined with autonomous
aircraft towing vehicles. Specifically, by autonomous
engines-off taxiing, we mean a taxiing system involving
a towing vehicle that will, on command, autonomously
navigate to an assigned aircraft, attach itself, tow the
aircraft to an assigned location (a runway for departures,
a gate for arrivals), autonomously detach itself, and
navigate to an assigned location, either a staging area
or to service another aircraft’ [1]. The focus in this
paper is not on the problem of autonomous taxiing, but
rather the automation in the tower required to support
autonomous operations. Specifically, we identify a set
of sub-problems in planning, scheduling, and execu-
tion monitoring, that combine to provide a system for
continuous surface operations. The main sections of
the paper consist of an overview of the approach, a
discussion of the planning and scheduling components,
and a monitoring device that is based on recent advances
in predictive analysis.

II. OVERVIEW OF APPROACH

Airport surface operations consists of all the ac-
tivities required for handling arrivals and departures
of commercial aircraft. In principle this collection of
activities includes servicing tasks such as refueling or
loading/unloading baggage, but here the focus is on the
movement of aircraft: in the departure phase, movements
consist of pushback, navigation to the entrance to the
taxiway (called the spot), taxiing and takeoff; in the
arrival phase, movements consist of landing, entering
the taxiway, entering the ramp area, and navigating to
gate.



Route&&
Plan&

1 

Gate/Spot Release 
Planner

Tug Dispatcher

Runway Scheduler

Taxi-time Predictor

Aircra/&Routes&

Surface Scheduling 

Multi-Agent Plan

Conflict-Based Multi-
Agent Planner

Route Planner 

Simulation Data

Telemetry Data

Airport Surface Data

Markov Chains

Analysis Tool

Monitor Tool

Surface Modeling 
Surface&Data&w/&
“Hot&Spots”&

Aircra/&Schedules&

Aircra/&&
Schedules&

Fig. 1. System architecture

Airport surface operations is a complex logistics
problem, involving the coordination of potentially large
numbers of humans and machines. The two main criteria
for effective operations are safety and efficiency. At
the center of operations is ramp or Air Traffic control.
Currently tower operations for surface movement is
heavily based on human controllers interpreting surveil-
lance data from surface detection equipment such as
ASDE-X, and communicating routing information to
pilots. Although the operating environment is based on
rigid rules and procedures, there is much uncertainty in
surface movement, primarily in the form of delays due
to changes in the operating environment. Uncertainty
is currently handled through continuous replanning and
rescheduling movements by human controllers to re-
spond to delays or other contingencies.

Here we propose a new design for tower operations
based on automation. We focus on two areas in which
automated decision making could assist the human
controller in more safe and efficient operations: data
analysis for behavior modeling and route planning and
scheduling. The overall system is visualized in Figure 1.
The three main components of the system are models,
which are of two kinds: topological and behavioral;
route planning, and surface scheduling, comprised of
the following sub-problems: runway sequencing and
scheduling [2]; spot or gate release scheduling [3]; gate
allocation [4] and taxi route planning and scheduling
[5]. To this list we add towing vehicle dispatching for
autonomous towing vehicles [6].

Surface movement optimization is NP-hard [7]. Sev-
eral types of constraints are involved, including push-
back times, taxiway layouts, and runway and taxi-way

separation. Planning is dynamic, with aircraft contin-
uously entering and leaving the planning space, and
replete with uncertainty and unexpected events. These
complexities and the dynamic nature of the environment
motivate approaches to automated planning that require
reduced computational overhead while achieving useful
results.

III. PLANNING AND SCHEDULING

Surface planning and scheduling with autonomous
towing vehicles is viewed here a centralized process,
performed by a decision-support tool used by ramp con-
trollers, or tower (ATC) operators. The airport ground
routing and scheduling problems require directing air-
craft to their destinations in a timely manner, with
the aim being to reduce the overall travel time, delays
at the runway queue, and to maximize throughput.
Separation constraints between taxiing aircraft maintain
safety. Whereas for smaller airports the routing problem
can be simple to solve, for larger airports, especially
during peak hours, the interaction between the routes
of different aircraft often requires the application of a
sophisticated routing algorithm.

The overall approach to planning and scheduling
towing vehicle-based surface operations is an extension
of the Spot and Runway Departure Advisor (SARDA)
approach [3]. The SARDA scheduler addresses the
highly dynamic and uncertain planning environment by
a multi-stage process. The next paragraphs summarize
this process.

A. Route Planning

Airport surface route planning has received some
attention in the AI and OR communities [8], [9], [10]
[11]. In anticipation of autonomous towing in future
operations, we consider here the application of recent
approaches to multi-agent path finding (MAPF) for route
planning of towing vehicles. MAPF seeks a set of
conflict-free paths for a set of agents. Although NP-
hard to solve optimally [12], many powerful algorithms
have been presented for solving MAPF. Among them are
solvers based on reduction to other problems (SAT, ILP,
ASP) [13], [14], [15], ad-hoc enhancements to the A*
algorithm [16], [17], [18], unique state space represen-
tations [19], [20] and other techniques for non-optimal
solutions [21], [22], [23]. In particular, the Conflict-
Based Search (CBS) algorithm [20] is considered state-
of-the-art for many MAPF domains.

MAPF is a discrete time planner: the output is a
set of synchronized paths that assign each agent to a
location at each discrete time step. An example of an
MAPF instance and output on a grid-shaped problem

2



is illustrated in Figure 2. Although an airport is not a
grid, using a strategic placement of obstacles, a grid can
be transformed into a general graph. We can made this
transformation in order to create a graphical represen-
tation of part of Dallas Fort Worth airport (DFW); see
Figure 3.

Fig. 2. An instance of MAPF with start and goal locations being 13
and 22 for Agent 0, and 8 and 27 for Agent1. The MAPF solution gen-
erated by the CBS algorithm is: path of Agent 0: {13, 19, 20, 21, 22};
path of Agent 1: {8, 14, 15, 15, 21, 27}. The solution is no longer
feasible to execute if Agent 1 arrives at location 21 from location 15
before Agent 0 gets to or leaves location 21.

B. Dispatching and Scheduling

The SARDA scheduler contains three main compo-
nents: a runway sequencer and scheduler; a spot and
gate release scheduler; and a towing vehicle dispatcher.
The spot and gate release scheduler selects times for
pushback from the gate, and times for releasing the
towing vehicle/aircraft for entry into the taxiway (the
spot is the entry point into the taxiway from the ramp
area). GIven a multi-agent plan generated by the MAPF,
the scheduler continuously controls the scheduling of
towing vehicle movements.

The inputs to the scheduler consist of the current snap-
shot of the airport (the current locations of each active
towing vehicle on the surface), scheduled push back and
arrival times for some time into the future (currently,
the next 15 minutes), and various constraints such as
aircraft-specific parameters and separation constraints.
To handle uncertainty in surface dynamics, these inputs
are refreshed every few seconds. To control the number
of changes made to the outputs of the schedule, a freeze
horizon is imposed which precludes major changes to
be made to the current schedule.

The outputs of the scheduler, are, in fact, three sched-
ules: a runway schedule, a spot and pushback schedule,
and a towing vehicle schedule, which are communi-
cated to the towing vehicles.The times computed by
the scheduler represent each vehicle’s earliest possible
arrival time at each node. However, this set of routes
may contain numerous conflicts (separation constraint

Fig. 3. Graphical representation of surface of part of Dallas Fort
Worth Airport

violations). To resolve such conflicts, the system con-
tains a flow model and a network event simulator to
model arrivals at nodes representing intersections, to
determine the amount of time that aircraft must hold
at current locations to maintain separation requirements,
and to ensure other safe conditions (e.g. at intersection
crossings, or to maintain wake vortex separation). The
flow model assumes conflict avoidance on the surface to
be the combined responsibility of the controller and tow-
ing vehicle. The controller identifies spatial violations in
the schedule such as aircraft approaching head on. The
towing vehicle determines possible conflicts at the node
it is currently approaching, and adjusts its speed accord-
ingly. Together, the scheduler and deconfliction model
approximate the taxi routings and resource utilization
(gates and runways) that are most likely to be used by
tower controllers.

A towing vehicle dispatcher is a kind of resource
scheduler: given an available towing vehicle, and an
aircraft that needs to be towed, the dispatcher assigns the
towing vehicle to the aircraft, and generates a shortest-
path route for the towing vehicle to navigate to reach the
assigned craft. Ordering the available towing vehicles
to determine the most efficient allocation can be de-
cided using different criteria. We currently use a simple
shortest distance criterion: the available towing vehicles
are ordered by distance between towing vehicle and
attachment point (i.e. gate or runway exit), and the one
with the smallest distance is assigned. A subset of nodes
in the graph are designated as towing vehicle depots that
provide a re-charging station and designated locations
for dispatching idle towing vehicles. Towing vehicle
depots should be strategically placed along the surface

3



to reduce the time between dispatching an idle towing
vehicle and reaching its assigned aircraft for attachment.
Towing vehicles can also be dispatched from locations
other than depots; for example, a towing vehicle might
have completed a towing operation to one gate, and be
then dispatched to a nearby gate for the next departure
towing task. Problems similar to the dispatching problem
have been studied in the AI literature; for example, [6].

C. Discussion

A discrete time approach to route planning has a
number of limitations: first, it requires the synchronizion
of the movements of all agents perfectly, which can
be difficult; second, the size, velocity, safety margin
and other properties of each of the towing agents are
not uniform, and this approach abstracts away these
differences; finally, and most importantly, surface op-
erations are laden with temporal uncertainty and the
concrete plans generated by an MAPF algorithm do
not allow for temporal uncertainty. As a result, the
execution of the synchronized discrete MAPF solutions
in environments with such complex dynamics involves
continuous execution modeling and potential replanning
when the MAPF solutions are no longer executable.

Simple Temporal Networks (STNs) have been used to
represent temporal flexibility in plans. Here we propose
an approach that takes a synchronized discrete solution
generated by MAPF algorithms as input and generalizes
it to a continuous routing plan using STNs. A centralized
executive and monitoring system can then use the STN
to dispatch towing vehicles and incrementally assign
times for vehicle locations along their assigned route.
The main idea is to consider only those locations visited
by more than one agent at different time steps. It is
essential for the continuous routing plan to respect the
order of visitation by the agents to the same location
given by the MAPF solution, since the consistency of the
order of visitation is sufficient for the MAPF solution
to remain feasible to execute. This idea is demonstrated
in Figure 2. The partial order obtained in this way can
then be represented as a temporal plan graph in which
a vertex corresponds to the event of an agent visiting a
location, and a directed edge corresponds to the temporal
precedence between two events. This temporal plan
graph allows us to add additional temporal constraints
between events. By analyzing this temporal plan graph
in the simple temporal problem (STP) framework, we
can efficiently reason about the time interval that any
given event can occur in, which provides a principled
formalism for performing probabilistic reasoning at any
time during the execution of the routing plan. An ex-
ample of a STN corresponding to the MAPF instance

shown in Figure 2 is found in Figure 4.
In this section we have sketched a system for a hybrid

centralized system for airport surface route planning and
scheduling and distributed execution using autonomous
agents. A prototype of the SARDA-based planning and
scheduling system has been implemented in Python and
C++, along with a simulator of DFW terminal behavior;
see [1] for details about the implementation.

The main challenge for such a system is handling
the uncertainty on the airport surface, as the result of
interference with other surface vehicles, delays in com-
munication, changes in weather, and unexpected changes
in traffic volume in the air. Our current procedure com-
bines simple pre-defined route planning with continuous
scheduling and monitoring to handle uncertainty. The
efficiency of operations can be improved upon, we
claim, with more sophisticated planning and modeling
of surface behavior. This section has illustrated the use
of STNs to represent the temporal flexibility inherent in
the problem. In the next section, we describe work on
probabilistic modeling and analysis for increasing the
predictive capabilities of a surface management system.

IV. MODELING AND PREDICTIVE ANALYSIS

To address the temporal uncertainty on the airport
surface we propose a behavioral model which is auto-
matically inferred from telemetry data, log files and sim-
ulation data available from previous or similar operations
at the airport. The model uses a grid abstraction of the
surface as the basis for a Discrete Time Markov Chain
(DTMC). The model can be analyzed using temporal
logic queries to obtain predictions about the likelihood
that temporal constraints for avoiding conflict will be
violated. This information can be used by humans or au-
tomated tools to monitor surface behavior or alter plans.
This section describes the creation and deployment of
the model for predictive analysis.

A. Model Inference

The goal of the model inference component is to
build “behavioral models” of surface operations (for
both towing vehicles and airplanes within a specified
airport). Such models contain key information that en-
able analysis with respect to safety, delays, throughput
etc. One can use such models to optimize planning
decisions for minimizing delays in taxiing and avoiding
congestions.

Our models are DTMCs, i.e. automata labeled with
outgoing probabilities on their transitions. We infer these
models from time series data; each step encodes the
value of the states observed at each time step. Thus
the states of the inferred model represent “abstractions”

4



AG:-3, LOC:-3, inNode=false, T:-3

AG:0, LOC:13, inNode=true, T:0

[0,0]

AG:1, LOC:8, inNode=true, T:0

[0,0]

AG:-4, LOC:-4, inNode=false, T:-4

AG:0, LOC:13, inNode=false, T:0

[0,1.79769e+308]

AG:0, LOC:19, inNode=true, T:1

[1,1.79769e+308]

AG:0, LOC:19, inNode=false, T:1

[0,1.79769e+308]

AG:0, LOC:20, inNode=true, T:2

[1,1.79769e+308]

AG:0, LOC:20, inNode=false, T:2

[0,1.79769e+308]

AG:0, LOC:21, inNode=true, T:3

[1,1.79769e+308]

AG:0, LOC:21, inNode=false, T:3

[0,1.79769e+308]

AG:0, LOC:22, inNode=true, T:4

[1,1.79769e+308]

AG:1, LOC:21, inNode=true, T:4

[0.1,1.79769e+308]

AG:0, LOC:22, inNode=false, T:4

[0,1.79769e+308]

[0,1.79769e+308]

AG:1, LOC:8, inNode=false, T:0

[0,1.79769e+308]

AG:1, LOC:14, inNode=true, T:1

[1,1.79769e+308]

AG:1, LOC:14, inNode=false, T:1

[0,1.79769e+308]

AG:1, LOC:15, inNode=true, T:2

[1,1.79769e+308]

AG:1, LOC:15, inNode=false, T:3

[0,1.79769e+308]

[1,1.79769e+308]

AG:1, LOC:21, inNode=false, T:4

[0,1.79769e+308]

AG:1, LOC:27, inNode=true, T:5

[1,1.79769e+308]

AG:1, LOC:27, inNode=false, T:5

[0,1.79769e+308]

[0,1.79769e+308]

Fig. 4. A temporal plan graph generated from the MAPF instance
shown in Figure 2. Each vertex corresponding to the event “j moves
into loc” indexed by t is labeled as “AG:j, L:loc, inNode=true, T:t” in
the figure, while each vertex corresponding to the event that “j moves
out of loc” indexed by t is labeled as “AG:j, L:loc, inNode=false, T:t”
in the figure. XStart has all labels being -3 and false. XFinish has all
labels being -4 and false. The minimum makespan of the continuous
routing plan, that equals the earliest time for the event XFinish, is
4.1. Agent 1 can move into location 21 0.1 time units after Agent 0
moves out of location 21.

of the state reported in the log file and transitions in
the model correspond to the time steps in the log file.
The abstraction chosen depends on the properties of
interest. The log data is discretely sampled, in some
cases many times per second; therefore it is necessary to
select a resolution to allow for realistic state transitions
and to prevent state space explosion. The probability
distribution for a particular state is estimated by comput-
ing the ratio between the number of traversals for each
outgoing transition and the total number of traversals
of the transitions exiting states; this corresponds to
the maximum likelihood estimator for the probability
distribution at that state.

The abstraction we used is based on dividing the
airport surface into a grid. For each grid a “count” of
the number of vehicles (airplanes, towing vehicles) is
stored. The counts of the grid elements at a specific
discrete time constitute a state in the generated model.
Using this abstraction, we can either build a single
model for the whole surface operations or we can build
several towing vehicle-centric models which capture the
operations of each towing vehicle separately, together
with the interactions with other vehicles in its immediate
vicinity. The advantage of this latter approach is that the
models are smaller and therefore easier to build, while
at the same time being more precise.

We have developed a prototype tool, called
LOG2MODEL, written in Java that implements
our approach. It builds models with different levels
of abstraction, allowing for the adjustment of the
granularity of abstraction: decomposing the airfield
into a coarse (fine) grid is likely to yield a less (more)
precise model at the expense of a smaller (bigger)
state space. Further, as noted, one can build models
capturing the activities of all the vehicles on the surface,
or models focused on specific vehicles. The generated
DTMC can be visualized (via DOT files) and analyzed
automatically using a translation to the modeling
formalisms of the PRISM [24] and UPPAAL [25]
model checkers.

B. LOG2MODEL

Figure 5 provides an overview of LOG2MODEL. It is
comprised of three main components: a log parser, an in-
termediate model generator, and a model generator. The
modularity, along with the design approach that provides
several extension points, facilitates easy experimentation
with pre-processing and abstraction techniques and to
define translations from a generic (intermediate) model
to different modeling formalisms.

The log parser processes the input log, and uses defini-
tions of a state and the transition function to generate the

5



Fig. 5. Tool architecture overview.

intermediate model. The intermediate model is domain
agnostic and defined as a generic automaton that allows
to generate input models for different model checkers,
e.g., reactive modules for the PRISM model checker.
A state is an assignment of values to model variables
and transitions can have attributes/labels attached. The
attributes are used for defining DTMCs. Translating
the intermediate model requires mapping states and
transitions from the intermediate model to the target
modeling formalism.

Currently, LOG2MODEL supports surface log
data from Dallas Fort Worth airport. In addition,
LOG2MODEL supports several variations of grid
abstractions applicable for abstracting “positional”
log data. Among them, LOG2MODEL has 3D and
2D grids with homogeneous and heterogeneous grid
sizes. We provide translations from the intermediate
model to the modeling formalisms of the PRISM
model checker (reactive modules) and to the UPPAAL
model checker (Networks of Timed Automata). We also
provide a translation to DOT for model visualization
and to facilitate systems understanding and debugging.
Figure 6 shows an example model for a 2x2 grid
abstraction.

1) Model Analysis: The models are analyzed based
on queries written in temporal logics. For a data log
recording the positions of more than 30 autonomous
towing vehicles and airplanes each second, for 70 min-
utes of activity, we analyzed 123 MB of data in less than
5 seconds. The generated models have 75 states (10x2
grid abstraction) and 96 states (4x4 grid abstraction),
respectively. For the corresponding DTMC generated
as reactive modules for PRISM, we analyzed example
qualitative and quantitative (PCTL) properties:

• P < 0.6 [F < 50 q0 < 30]: The probability

that less than 30 towing vehicles/airplanes are
present in quadrant 0 within the first 50 time units
(seconds), is less than 0.6.

• P =? [F < 300 q0 > 33]: What is the proba-
bility that more than 33 towing vehicles/airplanes
are present in quadrant 0 within the first 300 time
units (seconds)?

Verifying the properties takes less than a second, respec-
tively returning true and 0.1058.

As hinted, different partitioning schemes of the grid
affect the resulting state space of the model and the
granularity of the analysis. Table I shows examples of
this, where we generated two different models: one that
abstracts the positions of all agents present in the model
(row Multi); and one that outputs separate models for
each of the agents (rows SA⇤), with min (max) denoting
the minimum (maximum) number of transitions in the
model generated for a towing vehicle. Putting the in-
dividual models in parallel yields a complete system.
For each model, we analyzed the example property
P = [F < 3 q 0 1 > 0], i.e. What is the probability
of reaching the grid cell represented by state q 0 1
within 3 discrete time steps?.

Analyzing properties on the multi-agent model take
longer than for the single agent models. Also note
that for agent #19, different grid sizes yield the same
probability. Consider the following plan:

AGENT 0 Path: 11 11 19 27 28 29 21 13

AGENT 1 Path: 19 19 27 28 29 30 22

AGENT 2 Path: 27 28 29 37 45 37 29

AGENT 3 Path: 35 27 28 29 37 38

Where Agents 0 . . . 4 represent towing vehicles and
11, 19, 27 . . . represent grid positions. For example the
first line in the plan states that in the first time step,

6



q_1_0=73
q_0_0=0
q_0_1=0
q_1_1=0

331
(0.976)

q_1_0=74
q_0_0=0
q_0_1=0
q_1_1=0

4
(0.012)

q_1_0=72
q_0_0=0
q_0_1=0
q_1_1=0

3
(0.009)

q_1_0=72
q_0_0=0
q_0_1=1
q_1_1=0

1
(0.003)

q_1_0=57
q_0_0=0
q_0_1=0
q_1_1=0

110
(0.965)

q_1_0=58
q_0_0=0
q_0_1=0
q_1_1=0

4
(0.035)

q_1_0=75
q_0_0=0
q_0_1=0
q_1_1=0

162
(0.976)

3
(0.018)

q_1_0=76
q_0_0=0
q_0_1=0
q_1_1=0

1
(0.006)

q_1_0=58
q_0_0=0
q_0_1=1
q_1_1=0

q_1_0=59
q_0_0=0
q_0_1=0
q_1_1=0 3

(1.000)

4
(0.013)

2
(0.007)

292
(0.980)

3
(0.007)

433
(0.943)

9
(0.020)

q_1_0=60
q_0_0=0
q_0_1=0
q_1_1=0

13
(0.028)

q_1_0=61
q_0_0=0
q_0_1=0
q_1_1=0

1
(0.002)

q_1_0=77
q_0_0=0
q_0_1=0
q_1_1=0

297
(0.977)

3
(0.010)

q_1_0=78
q_0_0=0
q_0_1=0
q_1_1=0

2
(0.007)

q_1_0=76
q_0_0=0
q_0_1=1
q_1_1=0

2
(0.007)

4
(0.009)

9
(0.021)

410
(0.969)

2
(0.009)

2
(0.009)

228
(0.979)

q_1_0=75
q_0_0=0
q_0_1=1
q_1_1=0

1
(0.004)

q_1_0=61
q_0_0=0
q_0_1=1
q_1_1=0

q_1_0=62
q_0_0=0
q_0_1=0
q_1_1=0

4
(1.000)

q_1_0=90
q_0_0=0
q_0_1=0
q_1_1=0

5
(0.833)

q_1_0=89
q_0_0=0
q_0_1=0
q_1_1=0

1
(0.167)3

(0.016)

188
(0.979) q_1_0=79

q_0_0=0
q_0_1=0
q_1_1=0

1
(0.005)

q_1_0=59
q_0_0=0
q_0_1=1
q_1_1=0

1
(1.000)

q_1_0=88
q_0_0=0
q_0_1=0
q_1_1=0

148
(0.974)

2
(0.013)

q_1_0=87
q_0_0=0
q_0_1=0
q_1_1=0 2

(0.013)

q_1_0=60
q_0_0=0
q_0_1=1
q_1_1=0

1
(1.000)

1
(0.008)

2
(0.015)

129
(0.977)

q_1_0=71
q_0_0=0
q_0_1=0
q_1_1=0

201
(0.971)

2
(0.010)

q_1_0=70
q_0_0=0
q_0_1=1
q_1_1=0

1
(0.005)

q_1_0=70
q_0_0=0
q_0_1=0
q_1_1=0

3
(0.014)

3
(0.016) 2

(0.011)

179
(0.973)

q_1_0=66
q_0_0=0
q_0_1=1
q_1_1=0

q_1_0=67
q_0_0=0
q_0_1=0
q_1_1=0

3
(1.000)

q_1_0=65
q_0_0=0
q_0_1=1
q_1_1=0

q_1_0=66
q_0_0=0
q_0_1=0
q_1_1=0

2
(1.000)

q_1_0=63
q_0_0=0
q_0_1=1
q_1_1=0

q_1_0=64
q_0_0=0
q_0_1=0
q_1_1=0

1
(1.000)

q_1_0=62
q_0_0=0
q_0_1=1
q_1_1=0

q_1_0=63
q_0_0=0
q_0_1=0
q_1_1=0

2
(1.000)

2
(1.000)

1
(1.000)

q_1_0=69
q_0_0=0
q_0_1=1
q_1_1=0

1
(0.333)

2
(0.667) q_1_0=68

q_0_0=0
q_0_1=1
q_1_1=0

q_1_0=69
q_0_0=0
q_0_1=0
q_1_1=0

1
(1.000)

1
(1.000)

1
(1.000)

2
(0.015)

3
(0.023)122

(0.931)

4
(0.031)

1
(0.003)

4
(0.011)

340
(0.969)

q_1_0=68
q_0_0=0
q_0_1=0
q_1_1=0

6
(0.017)

6
(0.013)

444
(0.969)

8
(0.017)

3
(0.006)

8
(0.016)

486
(0.960)

9
(0.018)

2
(0.004)

9
(0.020)

433
(0.960)

q_1_0=65
q_0_0=0
q_0_1=0
q_1_1=0

7
(0.016)

7
(0.020)

344
(0.972)

3
(0.008)

1
(0.004)

3
(0.012)

242
(0.949)

9
(0.035)

2
(0.004)

9
(0.018)

468
(0.959)

9
(0.018)

q_1_0=79
q_0_0=0
q_0_1=1
q_1_1=0

q_1_0=80
q_0_0=0
q_0_1=0
q_1_1=0

1
(1.000)

1
(0.001)

937
(0.990)

4
(0.004)

q_1_0=81
q_0_0=0
q_0_1=0
q_1_1=0

4
(0.004)

2
(0.008)

246
(0.980)

q_1_0=86
q_0_0=0
q_0_1=0
q_1_1=0

3
(0.012)2

(0.004)

4
(0.008)

490
(0.988)

q_1_0=1
q_0_0=0
q_0_1=0
q_1_1=0

1
(0.048)

20
(0.952)

4
(0.011)

9
(0.024)

353
(0.954)

4
(0.011)

q_1_0=84
q_0_0=0
q_0_1=0
q_1_1=0

152
(0.981)

q_1_0=83
q_0_0=0
q_0_1=0
q_1_1=0

1
(0.006)

q_1_0=85
q_0_0=0
q_0_1=0
q_1_1=0

2
(0.013)1

(0.005)

208
(0.981)

q_1_0=82
q_0_0=0
q_0_1=0
q_1_1=0

3
(0.014)

14
(0.026)

1
(0.002)

527
(0.962)

6
(0.011)

3
(0.015)

200
(0.980)

1
(0.005)

1
(0.003)

4
(0.013)

7
(0.023)

299
(0.961)

4
(0.017) 1

(0.004)

230
(0.979)

3
(0.007)

429
(0.979)

6
(0.014)2

(0.005)

6
(0.015)

387
(0.980)

Fig. 6. Discrete Time Markov Chain inferred from example log data. States are represented by the number of vehicles in each cell of a 2x2
grid projected on the airport surface.

2x2 4x4 8x8 10x4 4x10 10x10

ID T# S# P T ID T# S# P T ID T# S# P T ID T# S# P T ID T# S# P T ID T# S# P T

Multi - 257 115 0.0367 4 - 546 288 1.00 15 - 949 549 1.00 16 - 925 524 1.00 11 - 808 462 0.00 6 - 1143 688 0.00 16
SA

min

#19 5 3 0.0138 3 #19 13 7 0.0138 3 #19 23 12 0.0138 2 #14 26 13 0 2 #19 19 10 0.0138 3 #19 33 17 0.00 1
SA

max

#10 11 4 0.00825 2 #29 31 13 0.00 3 #24 85 38 0.00 3 #24 60 25 0.00 3 #24 59 25 0.00 3 #24 103 45 0.00 3

TABLE I
RESULTS FOR DIFFERENT GRID CONFIGURATIONS FOR MULTI-AGENT (ROW MULTI) AND SINGLE AGENT (ROWS SA⇤) MODELS. ID IS THE

AGENT ID; T# (S#) IS THE NUMBER OF TRANSITIONS (STATES) IN THE GENERATED MODEL; P IS THE OBTAINED PROBABILITY FOR THE

PROPERTY P =? [F < 3 q 0 1 > 0]; AND T IS THE ANALYSIS TIME FOR THE PROPERTY.

agent 0 is in grid position 11. It will stay in the same
position in the 2nd time step, while in the third time
step it will move into position 19.

The analysis proceeds as follows. Suppose we have
build DTMC models for each agent using past telemetry
data (using the procedure described in the previous
section). We can then analyze the plan with respect to
to the built models: the plan defines implicit constraints
on the agent. For example Agents 0 and 1 should not
be in the same square (id 19) after 3 time steps. We can
encode this constraint as the following PCTL properties:

• P =? [F < 3 q19 > 0]: What is the probabil-
ity that Agent 0 is present in quadrant 19 within
the first 3 time units (seconds)? We check the first
property against Agent 0’s model

• P =? [F < 3 q19 > 0]: What is the probabil-
ity that Agent 1 is present in quadrant 19 within the
first 3 time units (seconds)? We check this second
(identical) property against Agent 1’s model. etc

Note: we expect a lot of symmetries in terms of tow-
ing vehicle-centric models and properties. We plan to
address this in the future.

We have described our preliminary efforts in develop-
ing a model-inference component for which predictive
analysis is envisioned to support the decision procedure
of the towing vehicle dispatcher. For future work, we
plan to refine our models. In particular we want to

distinguish between arrivals and departures and create
a more detailed model with a finer grid that takes into
account the configuration of the airport. For example, a
finer grid may take into account the gate area, taxiways,
and runways and allow a decomposition of this area
into polygons. To bootstrap the model-inference, we
would also like to use random testing. We also plan
to integrate the model in the dispatcher to minimize
delays in taxiing, to avoid congestions, and to maximize
throughput to increase capacity of the airport. Another
area that we plan to investigate is the behavior of towing
vehicles around intersections.

V. SUMMARY

Airport surface operations is a complex logistical
problem involving the coordination of humans and ma-
chines to achieve the maximum use of existing capac-
ity. Automation for increasing capacity and reducing
human workload is slowly being integrated into tower
operations. This paper proposed a integrated approach
for automating all phases of surface operations, from
route planning to execution monitoring, including the
potential for autonomous towing of aircraft. One of the
interesting issues in developing a complete system for
surface operations is the handling of uncertainty. One
solution, close to that adopted in current operations,
is based on continuous scheduling and replanning of

7



surface trajectories to address uncertainty during plan
execution. Our general approach is to ’migrate’ part of
the uncertainty into probabilistic or flexible predictive
models, which then will enable decision making, either
human or automated, under more informed conditions.
This approach will guide future research on this prob-
lem.

REFERENCES

[1] R. Morris, M. L. Chang, R. Archer, E. V. C. II, S. Thompson,
J. L. Franke, R. C. Garrett, W. Malik, K. McGuire, and G. He-
mann, “Self-driving towing vehicles: A preliminary report,” in
Proceedings of the Workshop on AI for Transportation (WAIT),
2014, pp. 35–42.

[2] S. Rathinam, Z. Wood, B. Sridhar, and Y. Jung, “A generalized
dynamic programming approach for a departure scheduling prob-
lem,” in AIAA Guidance, Navigation, and Control Conference,
2009, pp. 10–13.

[3] W. Malik, G. Gupta, and Y. Jung, “Spot release planner: Efficient
solution for detailed airport surface traffic optimization,” in
Proceedings of the 12th AIAA Aviation Technology, Integration,
and Operations (ATIO) Conference., 2012.

[4] V. Cheng, V. Sharma, and D. Foyle, “A study of aircraft taxi per-
formance for enhancing surface operations,” IEEE Transactions
on Intelligent Transportation Systems, vol. 2, no. 2, 2001.

[5] P. C. Roling and H. G. Visser, “Optimal airport surface traffic
planning using mixed-integer linear programming,” Int. J. Aero.
Eng., vol. 2008, no. 1, pp. 1:1–1:11, Jan. 2008. [Online].
Available: http://dx.doi.org/10.1155/2008/732828

[6] L. Hiatt and R. Simmons, “Pre-positioning assets to increase ex-
ecution efficiency,” IEEE International Conference on Robotics
and Automation, pp. 324 – 329, 2007.

[7] J. Reif, “Complexity of the mover’s problem and generaliza-
tions,” in Proceedings of the 20th IEEE Symposium on the
Foundations of Computer Science, 1979, pp. 421–427.

[8] J. Y. Du, J. O. Brunner, and R. Kolisch, “Planning towing
processes at airports more efficiently,” Transportation Research
Part E, vol. 70, pp. 293 – 304, 2014.

[9] C. Lesire, “An iterative a* algorithm for planning of airport
ground movements,” in ECAI 2010, 2010, pp. 413 – 418.

[10] S. Ravizza, J. Atkin, and E. Burke, “A more realistic approach
for airport ground movement optimisation with stand holding,”
Journal of Scheduling, vol. 17, no. 5, pp. 507–520, 2014.
[Online]. Available: http://dx.doi.org/10.1007/s10951-013-0323-
3

[11] J. A. D. Atkin, E. K. Burke, and S. Ravizza, “The airport
ground movement problem: Past and current research and future
directions,” 4th International Conference on Research in AIr
Transportation, pp. 131 – 138, 2010.

[12] J. Yu and S. M. LaValle, “Structure and intractability of optimal
multi-robot path planning on graphs,” in AAAI Conference on
Artificial Intelligence, 2013, pp. 1444–1449.

[13] P. Surynek, “Towards optimal cooperative path planning in hard
setups through satisfiability solving,” in Pacific Rim International
Conference on Artificial Intelligence, 2012, pp. 564–576.

[14] J. Yu and S. M. LaValle, “Planning optimal paths for multiple
robots on graphs,” in IEEE International Conference on Robotics
and Automation, 2013, pp. 3612–3617.

[15] E. Erdem, D. G. Kisa, U. Oztok, and P. Schueller, “A general for-
mal framework for pathfinding problems with multiple agents,”
in AAAI Conference on Artificial Intelligence, 2013.

[16] T. S. Standley, “Finding optimal solutions to cooperative
pathfinding problems.” in AAAI Conference on Artificial Intel-
ligence, 2010.

[17] G. Wagner and H. Choset, “M*: A complete multirobot path
planning algorithm with performance bounds,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems,
2011, pp. 3260–3267.

[18] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. R. Sturtevant,
R. C. Holte, and J. Schaeffer, “Enhanced partial expansion A*,”
Journal of Artificial Intelligence Research, vol. 50, pp. 141–187,
2014.

[19] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The
increasing cost tree search for optimal multi-agent pathfinding,”
Artificial Intelligence, vol. 195, pp. 470–495, 2013.

[20] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-
based search for optimal multi-agent pathfinding,” Artificial
Intelligence, vol. 219, pp. 40–66, 2015.

[21] R. Luna and K. E. Bekris, “Push and swap: Fast cooperative path-
finding with completeness guarantees,” in International Joint
Conference on Artificial Intelligence, 2011, pp. 294–300.

[22] B. de Wilde, A. W. ter Mors, and C. Witteveen, “Push and
rotate: Cooperative multi-agent path planning,” in International
Conference on Autonomous Agents and Multi-agent Systems,
2013, pp. 87–94.

[23] L. Cohen, T. Uras, and S. Koenig, “Feasibility study: Using
highways for bounded-suboptimal multi-agent path finding,” in
Annual Symposium on Combinatorial Search, 2015, pp. 2–8.

[24] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Ver-
ification of probabilistic real-time systems,” in Proc. 23rd Inter-
national Conference on Computer Aided Verification (CAV’11),
ser. LNCS, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806.
Springer, 2011, pp. 585–591.

[25] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,”
Int. Journal on Software Tools for Technology Transfer, vol. 1,
pp. 134–152, 1997.

8


