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SUMMARY

We present HVMTP, a time predictable and portable Java Virtual Machine (JVM) implementation
with applications in resource-constrained, hard real-time embedded systems, which implements all
levels of the Safety Critical Java (SCJ) specification.
Time predictability is achieved by a combination of time predictable algorithms, exploiting the
programming model of the SCJ profile, and harnessing static knowledge of the hosted SCJ system.
This paper presents HVMTP in terms of its design and capabilities, and demonstrates how a complete
timing model of the JVM represented as a Network of Timed Automata can be obtained using the
tool TetaSARTSJVM. The timing model readily integrates with the rest of the TetaSARTS tool-set
for temporal verification of SCJ systems. We will also show how a complete timing scheme in terms
of safe worst case execution times and best case execution times of the Java bytecodes can be derived
from the model. Furthermore, we take a first look at how to support the new Java 8 language feature
of Lambda expressions in a SCJ context – we look in particular at how the invokedynamic bytecode
can be implemented in a time predictable way and integrated in HVMTP. Copyright c© 0000 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Java is widely accepted as a programming language for many application domains and is
increasingly seeing popularity in educational institutions. Due to its high popularity, pushing
the use of Java into application domains for which Java was not originally intended has fostered
large research communities. One of these is the embedded real-time systems domain for which
timeliness of real-time tasks is an imperative. However, the original system model of Java does
not accommodate the requirements and constraints dictated by embedded real-time systems for
reasons such as the lack of high-resolution real-time clocks, insufficiently tight thread semantics,
and, most notably, memory management traditionally handled by a garbage collector whose
execution and execution time are highly unpredictable.

To accommodate this, much research has been devoted to develop appropriate programming
models in Java facilitating real-time systems development such as the Real-Time Specification
for Java (RTSJ) [26] and the Safety Critical Java (SCJ) [36] profile. The specification of the
latter is still a draft, but it is reasonable to assume that the development towards applicable
real-time programming models for Java has come a long way.
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HVMTP: A TIME PREDICTABLE AND PORTABLE JAVA VIRTUAL MACHINE 3

Having an appropriate programming model is a necessary, but not the only, step towards use
in a hard real-time setting. Equally important is that the underlying execution environment
exhibits temporally predictable behavior to allow reasoning about timeliness. Many embedded
hardware platforms are relatively simple and do not include the same amount of technologies
for improving average case execution time as is the case on most desktop hardware platforms.
As a result, the temporal behavior of the machine instructions of embedded microcontrollers
can in most cases be modelled. Hence, the Java Virtual Machine (JVM) is the remaining
component in enabling temporal verification of hard real-time systems written in Java.

The JVM adds to the complexity in performing static analysis of Java compared to C, which
traditionally can be executed on bare metal. To mitigate this complexity and direct attention
towards the programming model, efforts have been made in establishing a similar execution
environment as that for C, that is, removing the (traditionally) software implemented JVM
from the equation. Particularly, aJile Systems [2] and the Java Optimized Processor (JOP)
project [48] have both implemented a JVM in hardware thereby achieving native execution
of the resulting Java bytecode. The JOP has documented and predictable execution times
of the Java bytecodes. A problem with hardware implemented JVMs is that they necessitate
special-purpose hardware such as FPGAs which may be a costly solution especially considering
that embedded systems are sometimes produced in large quantities. A more general solution
is to allow real-time Java systems to be executed on common embedded hardware used in
industry, such as ARM and AVR while remaining amenable to static analysis. This necessarily
demands that the JVM is amenable to static analysis as well, which is difficult, since the JVM
specification [35] allows for high flexibility; it emphasises on what a JVM implementation must
do i.e. the semantics of the bytecode instructions, but it does not specify how.

The contribution of this paper is threefold: Our first contribution is to demonstrate how a
JVM implementation, the Hardware near Virtual Machine (HVM), originally intended for
embedded systems can be redesigned to exhibit complete time predictable behavior. The
redesign is possible by combining statically inferable knowledge about the hosting application,
the SCJ programming model, and time predictable algorithms with bounded execution times.
We denote this time predictable JVM implementation HVMTP, and based on this, our second
contribution is the derivation of a complete timing model that captures the temporal behavior
of the JVM and allows reasoning on Timed Computation Tree Logic (TCTL) properties. The
timing model is derived using the complementary tool, TetaSARTSJVM, a model-based and
highly flexible tool for safe timing analysis of JVM executables part of the TetaSARTS
collection of timing analysis tools [37, 38, 39]. Our third contribution, is the TetaSARTSTS

tool, which processes the timing model to derive safe Worst Case Execution Times (WCET)
and Best Case Execution Times (BCET) of all supported instructions collectively forming a
timing scheme. The timing model (or timing scheme) of the JVM can subsequently be used for
verifying temporal properties of the hosted SCJ hard real-time system. These contributions
were first presented in [41] at the Workshop on Java Technologies for Real-time and Embedded
Systems 2014 (JTRES’14). In addition to these contributions, we take a first look at how to
support the new Java 8 language feature of Lambda expressions in a Safety Critical Java
context – we look in particular at how the invokedynamic bytecode can be implemented in a
time predictable way and integrated in the HVMTP.

The paper is structured as follows; Section 2 reviews related work and is followed by
Section 3, which introduces our real-time Java framework in terms of timing analysis tools,
programming model, and execution platform. This puts HVMTP in perspective and is used
for the reasoning in Section 4, which contains the core of the paper; the HVMTP in terms
of the time-predictable revision the HVM has undergone as well as providing a treatment of
invokedynamic in HVMTP. Section 5 outlines the results of analyzing the HVMTP using
the TetaSARTSJVM and TetaSARTSTS. Section 6 reports on analysis results of SCJ
applications running on the HVMTP on the AVR ATmega2560 processor. In Section 7 we
discuss issues relating to the architecture of the JVM, followed by Section 8, which contains
conclusive remarks.
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4 K. S. LUCKOW ET AL.

2. RELATED WORK

There are many examples of JVM implementations for embedded real-time systems, e.g.,
Oracle Java Real Time System (Java RTS) [54], OVM [3], FijiVM [44], KESO VM [22], and
JamaicaVM [1]. Java RTS is a Just-In-Time (JIT) compiling JVM supporting the Real-Time
Specification for Java (RTSJ) [26]; a set of extensions to the JVM and class libraries facilitating
real-time systems development in Java. Java RTS is not supported by timing analysis tools
and as such cannot be used for reasoning about hard real-time constraints. OVM is an Ahead-
Of-Time (AOT) compiling RTSJ-compliant JVM implementation also lacking tool support
for timing analysis. The OVM is based on AOT-compilation with support for the SCJ [36]
specification based on the open-source SCJ implementation, oSCJ [45]. FijiVM has sufficiently
low memory demands and is applicable for embedded systems. It does however require an OS,
such as RTEMS, Linux or Darwin. The KESO VM is in many respects similar to the HVM; it is
an AOT compiling JVM that exploits static configuration knowledge for tailoring an optimised
execution environment. It uses an OSEK/VDX system model for OS functionality. Similar
to FijiVM, JamaicaVM is also targeting embedded systems and uses various optimisation
techniques for mitigating application size and resource demands on run-time.

Another direction of research has focused on implementing the JVM in hardware [48, 2].
The purpose of implementing the JVM in hardware is to facilitate time-predictable execution.
The JOP comes with accompanying tool support for conducting WCET analysis using the
WCET Analyzer tool (WCA) [51], and schedulability analysis using either SARTS [11] or
TetaSARTS [38, 37, 39]. The JOP is implemented using a Field-Programmable Gate Array
(FPGA).

Providing timing analysis of execution environments containing a software implementation
of the JVM running on embedded hardware, has been attempted by XRTJ [31], TetaJ [24]
and TetaSARTS. XRTJ presents a framework for portable timing analysis based on the
concept of Virtual Machine Timing Models (VMTMs) [30], which allow for expressing the
cost of individual Java bytecode instructions for a particular execution environment. The
work in [30, 31] proposes two strategies for deriving VMTMs: one based on profiling and one
based on benchmarks, but both approaches are measurement-based as detailed analysis of
the Java program, JVM implementation, and hardware platform is judged too complex. Due
to potentially under-approximating the temporal behavior, such models are not applicable
for making hard real-time guarantees. TetaJ is a model-based WCET analysis tool, which
translates the JVM and hardware state information, e.g. cache and pipeline behavior, into
a Network of Timed Automata (NTA) model which is amenable to model checking using
Uppaal [6]. TetaSARTS uses a similar approach, but incorporates a number of analyses and
optimisations to the model, and thus scales to analysis of bigger systems. It also facilitates
other analyses to be conducted including Worst Case Response Time (WCRT) analysis,
schedulability analysis, and more.

In this paper we take a first look at lambda expressions in connection with Safety Critical
Java. Since March 2014, the standard edition of Java, known as Java SE 8, has support for
closures in the form of lambda expressions. Lambda expressions allow for a functional style of
programming, for example the elegant MapReduce processing on collections, to be mixed with
Java’s object oriented programming style. The implementation of lambda expression uses the
invokedymanic bytecode introduced in the JVM as of version 7. There has, to our knowledge
only been a few works looking at Java lambda expressions and other Java SE 8 features in
connection with real-time and embedded programming. Chan et al. investigate locality of Java
8 Streams in Real-Time Big Data Applications in the context of RTSJ [14] and mention the use
of lambda expression in parallel bulk data operations. Jim Connors introduces an Embedded
Java 8 Lambda Expression Microbenchmark in his blog [16]. More broadly lambda expressions
and functional style programming is integral in the Erlang Language [55], which however,
only support soft real-time programming. The HUME language [28] supports hard-real-time
programming in a functional style.
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3. REAL-TIME JAVA FRAMEWORK

The contributions of this paper are within the scope of our ongoing work on a real-time Java
framework whose components form the trinity shown in Figure 1. While the components can

Timing Analysis

Tools

Real-Time 

Programming Model

Real-Time Execution 

Platform (JVM + HW)

Figure 1. The real-time Java framework.

be used in other contexts, their trinity provides a synergy effect; e.g. timing analysis is made
possible by the programming model, the precision and capabilities of the Timing Analysis
Tools are enhanced if the JVM exhibits a certain structure (and if certain hardware is used)
which is due to a model-based timing analysis approach. The design of all three components
have influenced each other. In this section, we review the framework which subsequently will
be used for reasoning on the JVM design.

3.1. Real-Time Programming Model

Our programming model is based on the SCJ profile. Most importantly, the profile addresses
inherent issues related to memory management and concurrency semantics, but it also
imposes restrictions on the use of certain classes from the Java class library as well as
adding functionality required to support real-time concepts e.g. high-resolution timers and
hardware device interactions. Here, we review some important areas and concepts of the SCJ
programming model that are particularly relevant to our work.

Safety critical applications have different complexity levels. To cater for this the SCJ
programming model is based on tasks grouped in missions, where a mission encapsulates a
specific functionality or phase in the lifetime of the real-time system as a set of schedulable
entities. The SCJ specification lets developers tailor the capabilities of the platform to the
needs of the application through three compliance levels. Level 0, provides a simple, frame-
based cyclic executive model which is single threaded with a single mission. Level 1 extends this
model with multi-threading via periodic and aperiodic event handlers, multiple missions, and
a fixed-priority preemptive scheduler (FPS). Level 2 lifts restrictions on threads and supports
nested missions. The development of SCJ applications at Level 0 is well described in [45]. In
the remainder of this section we will focus on the SCJ profile level 1.

3.1.1. Missions A mission encapsulates a specific functionality or phase in the lifetime of the
real-time system as a set of schedulable entities. For instance, a flight-control system may be
composed of take-off, cruising, and landing each of which can be assigned a dedicated mission.
A schedulable entity handles a specific functionality and has release parameters describing the
release pattern and temporal scope e.g. release time and deadline. The release pattern is either
periodic or aperiodic.

The mission concept is depicted in Figure 2 and contains five phases;

Setup where the mission objects are allocated during start-up of the system. This phase is
not considered time-critical.

Initialisation where all object allocations related to the mission or to the entire application
are performed. This phase is time-critical in applications with mode changes consisting
of a sequence of missions.
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Setup Initialisation Execution Cleanup Teardown

Re-initialise current mission

Select next mission

Current mission

Figure 2. Overview of the mission concept.

Execution during which all application logic is executed and schedulable entities are set for
execution according to a pre-emptive priority scheduler. This phase is time-critical.

Cleanup is entered if the mission terminates and is used for completing the execution of all
schedulable entities as well as performing cleanup-related functionality. After this phase,
the same mission may be restarted, a new is selected, or the Teardown phase is entered.
This phase is time-critical in applications with mode changes consisting of a sequence of
missions.

Teardown is the final phase in the lifetime of the application and comprises deallocation of
objects and release of locks etc. This phase is not time-critical.

A mission sequencer is used for governing the order of the mission objects and can be
customised to the application.

3.1.2. Memory Model SCJ introduces a memory model based on the concept of scoped memory
from the RTSJ, which circumvents the use of a garbage collected heap to ease verification of
SCJ systems. The SCJ memory model is shown in Figure 3 and introduces three levels of
memories;

Immortal Memory

Mission MemoryMission Memory

Private 

Memory

Private 

Memory

Private 

Memory

PEH 1
PEH 2

Private 

Memory

PEH 3

Private 

Memory

PEH 4
PEH 5

Private 

Memory

Figure 3. The memory model in SCJ.

Private memory which is associated with each real-time event handler. The private memory
exists for the entire duration of the handler. Upon task finish, the memory area is reset.

Mission memory is associated with every mission of the system and as such manages the
memories of all real-time handlers part of the mission as well as objects that are shared
among the handlers. When the mission completes execution, the mission memory is reset.

Immortal memory is the memory area that exists for the lifetime of the system.
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HVMTP: A TIME PREDICTABLE AND PORTABLE JAVA VIRTUAL MACHINE 7

Dynamic class loading is outside the scope of the SCJ specification. Hence, it is not necessary
to reason about classes potentially being loaded over a network which would complicate timing
analysis significantly. Furthermore, finalizers will not be executed and we make the reasonable
assumption that Java bytecode verification of class files has been done prior to the time-critical
phase. The Predictable Java profile [9], being an alternative Java profile for hard real-time
systems development, does allow the use of finalizers and [10] has demonstrated that timing
analysis is possible. The contribution in this paper may be extended to include finalizers in
future work.

3.2. Real-Time Execution Platform

The Hardware near Virtual Machine (HVM) [53, 32] is a Java virtual machine for embedded
devices. The HVM supports the execution of Java programs on resource-constrained embedded
hardware environments with as little as a few kB of RAM and 32 kB of ROM. The HVM
supports iterative interpretation and a supplementary AOT Java-to-C translation mechanism
or a hybrid of the two execution methods (enabling AOT compiled code to interact with
the interpreted units and the other way around). Certain Java annotations can be used for
specifying portions of code to be translated directly to C (the default is to do interpretation).

Section 5 contains measurements that show that Java code compiled by the HVM AOT
compiler is 2-3 times slower than hand-written native C, and interpreted code is more than
10 times slower. Rudimentary measurements performed using the HVM also indicate that the
code size of AOT compiled Java code correlates with the execution time and is 2-3 times
higher than for hand-written native C. On the other hand, code size of interpreted code is
approximately half that of hand-written native C, since the Java bytecode format is a tight
format compared to common RISC instruction set architectures.

The capability to select what to compile and what to interpret enable that e.g. performance
intensive parts of the application can be translated to native code thus trading off memory for
improving performance.

In either case the HVM produces self-contained, strict ANSI-C code that has been specially
crafted to allow it to be embedded into existing C based build and execution environments;
environments which may be based on non standard C compilers and libraries. The HVM
does not require a POSIX-like OS, nor does it require a C runtime library to be present for
the target. The main distinguishing feature of the HVM is to support the stepwise addition
of Java into an existing C based build and execution environment for low-end embedded
systems. This will allow for the gradual introduction of the Java language, tools and methods
into a existing C based development environment. Through program specialization, based
on a static whole-program analysis, the application is shrank to only include a conservative
approximation of actual dependencies, thus keeping down the size of the resulting Java based
software components.

The HVM employs JVM specialisation; a JVM is produced specifically for hosting the JBC
program of a given application. This is done using the Icecap-tools Eclipse-plugin, which
analyzes the JBC program and produces an executable for the target platform. The analyses
and transformations can be extended, and incorporate a number of (static) optimizations
for improving performance of the JVM and for reducing its size. This includes receiver-type
analysis for potentially devirtualising method calls and intelligent class linking which computes
a conservative set of classes and methods that are used in the application. Only this set will
be embedded in the final HVM executable. It also conservatively estimates the set of JBC
that will actually be used. Based on this, only those parts of the interpreter that are required
are included. E.g. if the bytecodes for doing long arithmetic are not needed by the program,
those parts of the interpreter are not included. In other words a JVM is produced specifically
for hosting the Java bytecode program.

3.2.1. Real-Time Library Support An important requirement of the HVM is to support
platforms where no OS is available (bare metal platforms). This raises the question of how to
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8 K. S. LUCKOW ET AL.

support features such as preemptive scheduling and memory management - features which are
usually offered by an underlying OS. To make real-time preemptive scheduling and predictable
memory allocation available on bare metal platforms the Safety-Critical Java specification
(SCJ), Level 0, 1 and 2 has been implemented for the HVM. The SCJ supports real-time
preemptive scheduling of asynchronous handlers and predictable memory allocation using the
scoped memory concept of SCJ. These high level concepts have been implemented almost
entirely in Java. The overall structure of an SCJ application running on top of the HVM
using the accompanying SCJ implementation (HVM-SCJ [53]) as well as the Icecap-tools
SDK is shown in Figure 4. The HW Interface and the VM Interface have a very thin native
layer written in assembler. The most important part here is to implement context switching.
To port the SCJ implementation to a new platform this part must be written in the instruction
set of the target. Only a handful of native code lines are usually required.

SCJ requires the programmer to adopt a specific programming style and program structure.
The programmer can also choose to only utilize the core preemptive scheduling and scope
memory facilities without using the entire SCJ infrastructure.

On platforms that do include an OS, Java level threads can be mapped to native OS threads,
and scheduling can be delegated to the OS. This has been used to implement SCJ Level 2 and
multicore support in the HVM†.

The HVM supports well known concepts for device level programming, such as Hardware
Objects [52] and 1st level interrupt handling, and it adds some new ones such as native
variables. The HVM is integrated with Eclipse. More details of the HVM is available
elsewhere [33]‡.

SCJ Application

HVM-SCJIcecap SDK

HVM

VM Interface

HW MemoryCPU Clock

HW Interface

...Interrupts I/O

Figure 4. Constituents of an SCJ application on HVM.

3.3. Timing Analysis Tools

The work we present in this paper fits into our TetaSARTS collection of open-source timing
analysis tools. TetaSARTS is model-based in the sense that the analyses are formulated
as model checking problems using the modeling formalism of the Uppaal model checker.
Collectively, the timing analysis tools form a toolchain – Figure 5 shows the major components
and their interactions.

Conducting the timing analyses requires two fundamental components in our modeling
framework; the temporal behavior of the target application as well as the execution
environment must be modelled. A model of the temporal behavior of the execution environment
can be generated by the TetaSARTSJVM

§ tool.
The modeling formalism used for capturing the temporal behavior of both the application

and the execution environment is Networks of Timed Automata (NTA), which is the input
language for the Uppaal model checker. Here it suffices to say that a Timed Automaton (TA)

†https://github.com/zs673/Multiprocessor-icecap-SCJ-RTE
‡the HVM and Icecap-tools Eclipse-plugin can be downloaded from http:www.icelab.dk
§TetaSARTSJVM, HVMTP, and generated models are available on the project website: http://people.cs.
aau.dk/~luckow/hvmtp/
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TetaSARTSJVM

JVM Src

JVM Executable (AVR/

ARM/...)
JVM Timing Model 

(Network of Timed 

Automata)

TetaSARTSanalyser

TetaSARTSTS

JVM Timing Model 

(BCET and WCET)

Schedulability
WCRT

WCET

Blocking Time

...

Analysis Result

SCJ Application

Figure 5. Overview of the TetaSARTS toolchain.

is a finite state machine extended with real-valued clocks that progress synchronously as time
elapses. A number of TAs can be composed into an NTA by using the (CCS-style) parallel
composition operator. As an NTA, the TAs share clocks and action. For a full exposition of
the semantics of TAs and NTA the reader is referred to, e.g., [7].

The temporal behavior as a TA is captured from the control-flow of each of the Java
bytecodes of the target JVM. TetaSARTSJVM is capable of conducting this process. More
specifically, TetaSARTSJVM takes as input the JVM executable to account for compiler
optimisations, transformations, and more, that likely influences the temporal behavior of
the Java Bytecodes. In addition, during the reconstruction process, the tool performs loop
identification analysis. Whenever a loop is identified, the tool currently assumes that loop
bounds are provided in the source code using annotations. If the annotations are missing, the
bounds can be provided interactively during the analysis.

Reconstructing the control-flow for each Java bytecode is done by defining regions that
enclose their implementations. Regions are defined using C macros: BEGIN JBC(X) and
END JBC(X) denote the start and end of Java bytecode X. The macros expand to code that
instruments the binary to allow TetaSARTSJVM to identify regions from which the control-
flow must be reconstructed and translated to TAs. As an example of this specification, see
Listing 1 which contains the implementation of i2l along with the region specification. We
will use this as running example. The product of applying TetaSARTSJVM on the produced

1 case I2L_OPCODE : {
2 #i f de f ined (INSTRUMENT)
3 BEGIN_JBC ( I2L_OP ) ;
4 #endif
5 int32 lsb = ∗(−−sp ) ;
6 i f ( lsb < 0) {
7 ∗sp++ = −1;
8 } else {
9 ∗sp++ = 0x0 ;

10 }
11 ∗sp++ = lsb ;
12 method_code++;
13 #i f de f ined (INSTRUMENT)
14 END_JBC ( I2L_OP ) ;
15 #endif
16 }

Listing 1. i2l.

fetch!

fetch!

fetch!

fetch!fetch!

fetch!

fetch!

fetch!

sbci_38

subi_37

movw_91

subi_92

ldd_33

movw_36

and_34

brge_35

asm_inst = asm_ldd

asm_inst = asm_brge

asm_inst = asm_subi

asm_inst = asm_movw

asm_inst = asm_subi

asm_inst = asm_and

asm_inst = asm_movw

asm_inst = asm_brge

sbci_93

Figure 6. TA excerpt of i2l.

binary is shown in Figure 6. To understand how the control-flow and thus the temporal
behavior is captured, note the location in the TA with the label brge 35 – it branches to two
other locations: movw 91 and movw 36 essentially capturing the control-flow of the conditional
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10 K. S. LUCKOW ET AL.

statement in line 6 of Listing 1. Semantically, a transition captures the temporal behavior
of executing the instruction stored in to the Uppaal variable named asm inst. Note that
in general, capturing such detailed information of system behavior does not scale to large
systems which is attributed the so-called state space explosion problem. In our case, however,
each Java bytecode in isolation has sufficiently simple behavior to allow this explicit modeling
to be feasible for model checking. Later in the paper, we will provide results that verify this
claim. The Java bytecode implementations we are analysing, range from just a few lines of C
code in the simplest case, to a few hundred lines of C code producing ∼200 and ∼9000 machine
instructions, respectively. The resulting TAs produced from these have the same number of
locations and only nondeterminism corresponding to the conditional statements in the code.

Composing all the generated TAs defines an NTA that captures the behavior of the entire
JVM. We refer to this composition as the JVM NTA. This model, however, only captures the
control-flow of the JVM – the actual timing of each Java bytecode depends on the hardware
used: the TAs shown in Figure 7 captures the temporal behavior of the AVR ATmega2560
microcontroller. The composition of the TAs shown in the figure will be referred to as the
HW NTA. We note that additional platforms can be supported by the provision of suitable
TAs, e.g., the ARM7 and ARM9 models from METAMOC [20]. The channel labeled fetch is

(a) Fetch stage of a pipeline. (b) Execute stage of a pipeline.

Figure 7. METAMOC hardware TAs [20].

used for hand-shake synchronisation between the JVM NTA and the pipeline fetch stage in
Figure 7a; asm inst communicates the instruction to be simulated in the HW NTA. Similarly,
the channel labeled execute is used for establishing communication between the fetch stage
TA and the execute stage TA in Figure 7b. In both TAs, x is a clock variable that simulates
the instruction processing time in the respective pipeline stage. In the execute stage TA,
worst wait and best wait contains the worst and best case clock cycle execution times of the
simulated instruction. The call to the function init cache(asm rjmp) is used for initialising
the pipeline with the temporal behavior of the rjmp instruction. This is done to ensure that
the timing model is safe since the pipeline will be filled with the rjmp instruction prior to
executing the first instruction of any of the supported Java bytecodes.
JVM Timing Model refers to the complete timing model of the execution environment

synthesised from the HW NTA and the JVM NTA (see Figure 5). As such, it simulates the
timing behavior of the target JVM. The JVM Timing Model can be further synthesised with
a model of the target application yielding a model where various timing related analyses can
be conducted such as analysing schedulability and WCRTs of the tasks. These analyses are
performed using the TetaSARTSanalyser tool. For details on this tool, the reader is referred
to [37, 38, 39].

As an alternative, the JVM Timing Model can also form the basis for representing the
temporal behavior abstractly as a timing scheme, i.e., as summaries of execution times. The
TetaSARTSTS tool as shown in Figure 5 is used for generating this model. For all TAs
corresponding to the Java bytecodes, the tool analyses their respective WCET and BCET
using the sup- and inf-query extensions of the Uppaal model checker. These queries explore
the state space to determine the maximum and minimum values of the specified clock-variables.
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4. RE-DESIGNING THE HVM

The JVM Specification does not dictate how interpretation is carried out; typically, JIT
compilation is employed for improved average case performance of the application. This,
however, is at the expense of added JVM size due to the complexity of the interpreter in turn
making JIT-compilation an infeasible choice when considering resource-constrained embedded
systems. For real-time systems, another concern is the difficulty in reasoning about timing
of code because it is application- and usage-dependent; the specific application and profile
information obtained during run-time determines whether a code section is translated into
native code or not.

In this paper, we focus on the iterative interpreter of the HVM. Handling the Java-to-C
compiler and the hybrid of the two is left for future work. Listing 2 shows the structure of the
HVM interpreter.

1 stat ic int32 methodInterpreter ( const MethodInfo∗ method , int32∗ fp ) {
2 unsigned char ∗method_code ;
3 int32∗ sp ;
4 // . . .
5 start : {
6 const MethodInfo∗ currentMethod = &methods [ currentMethodNumber ] ;
7 method_code = (unsigned char ∗) pgm_read_pointer(&currentMethod−>code ,

unsigned char∗∗) ;
8 sp = &fp [ pgm_read_word(&currentMethod−>maxLocals ) + 2 ] ;
9 }

10 loop : while (1 ) {
11 unsigned char code = pgm_read_byte ( method_code ) ;
12 switch ( code ) {
13 case ICONST_0_OPCODE :
14 //ICONST X Java Bytecodes
15 case ICONST_5_OPCODE :
16 ∗sp++ = code − ICONST_0_OPCODE ;
17 method_code++;
18 continue ;
19 case FCONST_0_OPCODE :
20 //Remaining Java Bytecode impl . . .
21 }
22 }
23 }

Listing 2: Structure of the HVM interpreter.

The interpretation process is comprised of fetching (line 11), analysing and decoding (line
12), and executing (the body of each case statement e.g. line 15); the process is repeated
afterwards. The initial stages in the translation process; fetching, decoding, analysing, have
constant execution times. Fetching is implemented by reading the opcode pointed to by the
instruction pointer from an array of bytecodes of the executing method. Analysing (and
decoding) is performed by the switch-case statement; since the case values are close, the
structure is translated into a jump-table with constant time look-up. The final executing
stage is performed by performing the logic starting from the jump target and is thus the only
context-dependent stage.

A time predictable HVM can hence be constructed by redesigning each Java bytecode
implementation to be time predictable, which will be the subject of the following sections.

Many of the Java bytecodes naturally have constant execution times. This includes the
following classes:
Load and Store Instructions are used for managing values between the operand stack

and the local variables. It is comprised of instructions such as iload, istore, ldc, etc. If fp

and sp denote the frame pointer and the operand stack pointer and method code denotes the
instruction pointer, a constant execution time version of iload can be implemented as follows:
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unsigned char index = ∗(++method_code ) ;
∗sp++ = fp [ index ] ;

Type Conversion Instructions deals with type conversion among the primitive types
supported by the JVM. This is done using the instructions with format x2y where x is to be
converted into type y e.g. f2d for a float to double conversion. The following is a constant
time implementation of i2f:

int32 lsb = ∗(−−sp ) ;
∗( f loat ∗) sp = ( f loat ) lsb ;

Operand Stack Management Instructions deals with ordinary stack operations such
as popping values (pop), duplicating values (dup) etc. These can intuitively be implemented
as constant time operations. The following shows an implementation of dup:

∗sp = ∗( sp − 1) ;
sp++;

Control Transfer Instructions includes all the conditional instructions such as ifeq (if
the top of stack element is zero, branch to offset. Otherwise, continue execution at the next
instruction). A time predictable version of the ifeq instruction is shown below:

signed short int offset = 3 ;
i f (∗(−−sp ) == 0) {

BYTE bb1 = pgm_read_byte ( method_code + 1) ;
BYTE bb2 = pgm_read_byte ( method_code + 2) ;
offset = ( signed short int ) ( ( bb1 << 8) | bb2 ) ;

}
method_code += offset ;

The remaining Java bytecode classes not mentioned in the above and certain JVM features
are not naturally time predictable. For that reason, special treatment must be done in order to
make them time predictable. The Java bytecodes and concepts of concern have been classified
as:

• Object allocations
• Exceptions
• Method invocations
• Type checking of reference types
• Handling strings
• Platform dependencies
• Handling jump tables

The purpose of the following sections is to elaborate how we treated each of the classes in
order to make the JVM amenable to timing analysis

4.1. Object Allocation

There are four essential Java bytecodes that are used for object allocations:

new creates a new object.

newarray allocates a new array of a primitive type.

anewarray same as newarray, but creates an array of object references.

multianewarray similar to anewarray, but deals with multi-dimensional arrays.

We are targeting SCJ, and therefore, garbage collection is not a concern; object allocation and
deallocation will be achieved using scoped memory. This model enables that (de-)allocations
are performed at predictable points in time, but it does not entail that these are performed in
a time predictable manner.
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Object allocations are performed in the HVM by incrementing a pointer by the size of
the object that is to be allocated. For that reason, object allocation can be performed in
constant time. However, the HVM performs zeroing of the memory at allocation time, which
is an operation that has execution time linear in the size of the to-be allocated object. While
determining an application wide, fixed execution time for zeroing is possible by the bound
corresponding to allocating the largest object in the application, it is overly conservative
and will be application dependent. Therefore, a better approach is to harness SCJ: in the
setup phase of the SCJ safelet, the entire heap structure is zeroed, and subsequent object
allocations can then assume proper initialisation of the allocated memory. The technique is
inspired by jRate [17], an RTSJ extension to the GNU GCJ compiler. Thus on first entry to
a scoped memory area it is already zeroed. Therefore, whenever a scoped memory is exited,
the memory area is zeroed (again) which takes time linear in the size of the allocated scope.
We can therefore assume that scoped memory areas are always zeroed a priori on entry. This
operation is done in Java space using the native variables concept [53], which allows to write
directly to memory. In this way, the timing model for the HVM does not need to account for
zeroing, however, the timing model of the SCJ program does.

4.2. Exceptions

Exceptions are allowed in SCJ and it is permitted to allocate them before entering a time-
critical phase. In HVMTP, we exploit this fact and combine it with static information about the
exceptions. Before the HVMTP is constructed, the time-critical application code is analysed
for conservatively estimating the set of exceptions that may be thrown. This comprises both
checked and unchecked exceptions; the former can be determined by the uses of the athrow

Java bytecode, while the latter can be determined by examining the application for Java
bytecodes that can throw unchecked exceptions, e.g., idiv. This analysis is performed at
construction time of the HVMTP executable. The set conservatively estimates the exceptions
that may be thrown and can hence be considered safe. However, due to the safety measures
of the systems we are considering, it is customary to apply static analysis for guaranteeing
that certain exceptions are never thrown (e.g., that the denominator cannot become zero
in divisions). TetaSARTSJVM can be instructed to generate a timing model that excludes
exceptions to minimize over-approximation.

The exception objects associated with the potentially thrown exceptions are pre-allocated
during the initialisation phase. In this way, the remaining issue is to determine and execute
the exception handler; whenever an exception is thrown, it may be caught somewhere in the
call stack, which is conducted in time linear in the size of the call stack. For timing analysis,
we must assume worst case behavior; in this case it will be the maximum size of the call stack,
which is determined by reconstructing the call graph and determining the maximum depth.
Using this information, the code for finding the exception handler is shown in Listing 3.

1 unsigned short handler_pc ;
2 unsigned short pc = method_code − method−>code ;
3 Object∗ exception = ( Object ∗) ( pointer ) ∗( sp − 1) ;
4 unsigned short classIndex = getClassIndex ( exception ) ;
5 // @loopbound = MAX CALL DEPTH
6 while ( ( handler_pc = handleAthrow ( method , classIndex , pc ) ) == (unsigned short )

−1) {
7 sp−−;
8 method = popStackFrame(&fp , &sp , method , &pc , code ) ;
9 fp [ 0 ] = ( int32 ) ( pointer ) exception ;

10 i f ( method == 0)
11 return classIndex ;
12 }
13 sp = &fp [ method−>maxLocals ] ;
14 ∗sp++ = ( int32 ) ( pointer ) exception ;
15 pc = handler_pc ;
16 method_code = method−>code + pc ;

Listing 3: The algorithm for finding the exception handler.
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In the comment-style annotation in line 5, MAX CALL DEPTH is a macro, which expands to
the value of the maximal depth of the call graph. The annotation will be extracted by
TetaSARTSJVM when constructing the timing model.

4.3. Method Invocation

The class of Java bytecode instructions concerned with this issue includes:

invokestatic used for invoking static methods.

invokespecial used for invoking private instance methods, methods in super classes, and the
instance initialisation method.

invokeinterface invokes a method declared in an interface.

invokevirtual used for dynamic method dispatch.

invokedynamic used for invoking Java closures (lamda expressions).

4.3.1. Redesigning Method Invocation Management In the original implementation of the
HVM, recursion was used for handling method invocations. Specifically, when one of the
method invoking Java bytecodes was executed, the HVM interpreter was invoked recursively
with the method body of the callee as argument. An overview of this process is shown in
Listing 4. Upon returning from the invoked method, control is naturally returned to the
callsite of the method invoking instruction. This allows the interpreter to use the C stack
for implementing method invoking Java bytecodes, rather than maintaining it own stack
implementation.

1 case INVOKEVIRTUAL_OPCODE : {
2 const MethodInfo∗ mInfo ;
3 signed short excep ;
4 mInfo = findMethodInfo(&sp [ top ] , &method_code [ pc ] ) ;
5 //Code f o r hand l ing n a t i v e c a l l s . . .
6 excep = methodInterpreter ( mInfo , &sp [ top ] ) ;
7 // Deal with e x c e p t i o n s . . .
8 }

Listing 4: Recursion in invokevirtual.

Recursion in the JVM interpreter introduces various issues in relation to time predictability
and the approaches we use for timing analyses. First of all, any method call in the application
is turned into a recursive call of the interpreter, thus it becomes difficult to separate the state
of the interpreter from the state of the application it is executing. Recursion also poses similar
problems to unbounded loops: the recursion depth can be unbounded. For that reason a bound
must either be approximated potentially yielding very conservative results or code annotations
can be used to specify the recursion depth.

Another inherent issue of recursion pertains to modeling using TA; in our framework, a
TA is associated with the control flow of a single function (or method) and the semantics of
method calls are captured by an action (and corresponding co-action in the callee). However,
a TA is not capable of receiving on a co-action if it has signalled on the corresponding action
– this would intuitively have captured the semantics of a recursive call. Hence, to resolve this,
it would be necessary to make inherent changes to the timing analyses approach; to allow
recursion one could instantiate a number of the same TA corresponding to the depth of the
recursive call and let them synchronise in a sequential manner. This however, brings back the
original problem of determining the call depth and will furthermore affect model checking time
since the overall state of the model is comprised of the current locations of all instantiated
templates.

Instead of putting the responsibility on the timing analyses tools, we have addressed the
issue by redesigning the implementation of method invocation; instead of recursion, a call stack
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approach has been implemented. A stack frame is pushed onto the stack whenever a method
is invoked and the interpreter continues operating on this (see Listing 5).

1 case INVOKEVIRTUAL_OPCODE : {
2 //Code f o r hand l ing n a t i v e c a l l s . . .
3 unsigned short pc = method_code − (unsigned char ∗) pgm_read_pointer(&method

−>code , unsigned char∗∗) ;
4 fp = pushStackFrame ( mInfo , method , pc , fp , sp ) ;
5 method = mInfo ;
6 goto start ;
7 }

Listing 5: Using stack frames in invokevirtual.

The goto statement in line 6 jumps to the start of interpreter (see line 5 in Listing 2). When the
invoked method returns, execution of the call site continues by popping the stack and restore
the context stored in the frame. The push and pop operations on the stack are performed in
constant time and are modelled similarly to any other function as a TA.

4.3.2. Redesigning Method Dispatch invokespecial and invokestatic statically dispatch
control to the specified method. Therefore, they do not imply issues in terms of time
predictability because determining the callee and dispatching control is done in constant time.

Virtual method calls as produced by invokevirtual and invokeinterface are usually
implemented using well known techniques to perform method constant-time dispatch for single
and multiple inheritance. The original implementation of the HVM used vtables generated by
Icecap-tools for each class. At execution time a look up based on a simple index into
the vtable would yield the actual target method of the invocation. The interpreter source
performing the call will in this case be an index into an array of direct or indirect function
pointers. Such a call site is not directly time predictable by the offline analysis tools, since the
possible targets are not directly referred in the source code.

The HVM has been refactored to make the runtime look up of the possible target methods
time predictable. The strategy employed is as follows: at compile time, Icecap-tools analyses
each virtual call site and determines the set of possible types of the receiver at runtime. This
knowledge is a side effect of the computation of the dependency extent; the set of classes and
methods that may be called during runtime. The strategy applied to compute this is described
in detail in [53]. Because of the devirtualisation performed during the analysis phase only truly
virtual call sites are maintained – the rest are treated as invokespecial. In the case of Java-
to-C compilation each virtual call site gets translated into a C switch statement, switching on
the type of the receiver. Inside each case-statement is a direct call to the correct method. The
set of receiver types are calculated differently for invokevirtual and invokeinterface, but
the emitted switch statement looks the same.

1 class Polygon {
2 abstract int area ( ) ;
3 }
4 class Square extends Polygon { . . . }
5

6 class Rectangle extends Square { . . . }
7

8 class Circle extends Polygon { . . . }
9 // . . .

10 ArrayList<Polygon> figures = new ArrayList<Polygon>() ;
11 figures . add ( new Square (2 ) ) ;
12 figures . add ( new Rectangle (2 , 3) ) ;
13 figures . add ( new Circle (3 ) ) ;
14

15 int sum = 0 ;
16 for ( Polygon polygon : figures ) {
17 sum += polygon . area ( ) ;
18 }

Listing 6: Translating virtual method invocations (Java Source).

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



16 K. S. LUCKOW ET AL.

The virtual method invocation at line 19 in Listing 6 can be to any of three methods. This
gets translated into the C code included in Figure 7.

1 switch ( classIndex ) {
2 case 18 :
3 rval_m_85 = test_Circle_area ( sp , i_val3 ) ;
4 break ;
5 case 30 :
6 rval_m_85 = test_Rectangle_area ( sp , i_val3 ) ;
7 break ;
8 case 5 :
9 rval_m_85 = test_Square_area ( sp , i_val3 ) ;

10 break ;
11 }

Listing 7: Translating virtual method invocations (C source).

This switch explicitly mentions the possible targets and lends itself more easily to static
analysis. The HVM now relies on the C compiler to translate this switch statement into
efficient machine code.

For simplicity, this strategy is simulated in the interpreter. This means that the virtual
method dispatch does not utilise a standard virtual table, which would be a constant time
look up. Currently, the switch-statement case values (the virtual table) are encoded into the
bytecode of the method call. This is done in the same way for both invokevirtual and
invokeinterface. The interpreter then searches the table for the correct receiver. The time
it takes to look up any method at runtime is proportional to the size of the largest jump
table. In some cases, the runtime type of the receiver is not in the jump table and it is
necessary to get the super class of the receiver and try again. Thus, the time required to
perform the invokevirtual and invokeinterface bytecodes is the size of the largest jump
table multiplied by the maximum height of the class hierarchy. Both constants are generated
by Icecap-tools and used for annotating the interpreter loops pertaining to virtual method
dispatch. TetaSARTSJVM uses this information when building the timing model.

In summary, the strategy described here modifies the invokevirtual and invokeinterface

bytecode by encoding the switch statement case values into the bytecode. The WCET of the
interpreter source performing the actual call can be given a conservative estimate of the size of
the largest jump table multiplied by the maximum height of the class hierarchy. A drawback to
this strategy is that the WCET becomes a global property. Even though the Icecap-tools
knows the possible receiver types for each call site this is not taken into account. Still the
WCET of the interpreter source performing the call is as tight as it can be, since this code
will interpret all virtual calls in the hosted application.

To make the WCET estimate more accurate the interpreter source must be extended,
possibly by adding custom bytecodes handled by different statements in the interpreter, each
of which can be given a more tight WCET estimate.

4.3.3. Supporting Java Closures As of Java 8 the concept of closures for Java has been made
available to the programmer. Java closures can be used to cast methods to an interface and
later invoke that interface (see Listing 8).

1 public class TestInvokeDynamic {
2 private interface Action {
3 void doIt ( ) ;
4 }
5 private stat ic void foo ( ) {
6 System . out . println ( ”do i t ! ” ) ;
7 }
8 public stat ic void main ( String [ ] args ) {
9 Action action = TestInvokeDynamic : : foo ;

10 action . doIt ( ) ;
11 }
12 }

Listing 8: Casting a method to an interface.
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The closure facility can also be used as a convenient way to declare anonymous implementors
of an interface, as illustrated in Listing 9.

1 public class TestInvokeDynamic {
2 private stat ic interface Adder {
3 int add ( int x , int y ) ;
4 }
5

6 public stat ic void main ( String [ ] args ) {
7 Adder adder = (x , y ) −> {
8 return x + y ;
9 } ;

10 int x = adder . add (40 , 2) ;
11 System . out . println ( ”x = ” + x ) ;
12 }
13 }

Listing 9: Anonymous implementors.

The interfaces Action and Adder above are called Functional interfaces and may only declare
one method. This method defines the signature of the closure. The invocation of the closure
- see line 10 in Listing 8 and line 10 in Listing 9 - are handled by invokeinterface and
that bytecode has not been extended in any way because of the introduction of closures. The
creation of the closure object itself - see line 12 in Listing 8 and line 8 Listing 9 - is handled by a
new bytecode invokedynamic introduced to the Java VM. The invokedynamic bytecode does
not invoke the closure – it creates an instance of the functional interface. So the invokedynamic
bytecode is similar to new in its effect – it creates an instance of a class (that has 1 method
declared).

To implement invokedynamic in the JVM the following must be known,

• Which functional interface is being instantiated?
• Which method (class name, method name, method signature) implements the functional

interface?

Then the JVM calls a bootstrap method with a series of arguments. The bootstrap method
is called LambdaMethodFactory.metafactory and implemented in the JDK. It generates a
CallSite instance which has a MethodHandle that returns an instance of the functional
interface when invoked. So executing invokedynamic includes performing a callback from
the JVM into a specific JDK method.

In the HVM it is not possible to call LambdaMethodFactory.metafactory since the
dependency extent of that method is too large. Instead the HVM simulates that functionality.
The major part of that simulation is done statically by the compiler. For each occurrence of
invokedynamic it consults the class file and goes through the following steps:

1. invokedynamic is 3 bytes – last 2 bytes is a short index into the constant pool of the
enclosing class file

2. This index points to a ConstantInvokeDynamic at that index (new in Java 8)
3. That constant contains a BootstrapMethodIndex and a NameAndType constant
4. The NameAndType gives the functional interface method and signature
5. Then the enclosing class file is searched for a BootstrapMethods attribute. This contains

a single BootstrapMethod constant
6. That constant contains a bootstrapMethodRef and a list of bootstrap arguments
7. The bootstrapMethodRef is a ConstantMethodHandle – it has a referenceKind and a

ConstantMethodref

8. The ConstantMethodref refers to the bootstrap method LambdaMethodFactory.

metafactory

9. Then the bootstrap arguments are scanned, looking for a ConstantMethodHandle

10. This handle has (as above) a referenceKind and a ConstantMethodref
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11. The ConstantMethodref refers the closure method (containing class, name and
signature)

12. If the method is an anonymous method (like in Listing 9) it will be called lambda$X and
the byte code for it can be found in the enclosing class file.

We now have (1) the functional interface being implemented, (2) the bootstrap method, and
(3) the actual method containing the bytecode of the closure. Now the HVM does the following,

• Throws away the bootstrap method (not used)
• Creates a synthetic class containing one method which is the method with the bytecode

of the closure
• Changes the name of that method to be the same as the name declared in the interface

Now this synthetic class is added to the pool of classes managed by the HVM as if it were an
ordinary class. When executed at runtime the invokedynamic bytecode becomes the same as
new, since we know which class to instantiate (the synthetic class). The result of this is that
doing time analysis of the invokedynamic bytecode requires the same effort as when analyzing
the new bytecode (see Section 4.1).

This initial support for invokedynamic is a drastic over-simplification of what the
LambdaMethodFactory does. Still, this will be able to handle all uses of the invokedynamic

bytecode when compiled from Java source by the Java compiler, but the bytecode is intended
to be used in other ways as well. An example could be translating other languages (e.g. Scala)
into Java bytecode, and in such scenarios this initial support of the invokedynamic bytecode
is not sufficient.

As support will be extended in the future it will likely turn out that the runtime behavior of
invokedynamic changes as well, requiring a revisit of the timing analysis of invokedynamic.

4.4. Type Checking Reference Types

Runtime type checking between reference types is achieved by the checkcast and instanceof

Java bytecodes. In an implementation of the JVM where no knowledge about the class
hierarchy can be incorporated in the JVM prior to runtime, these operations are performed by
consulting the class and subclasses iteratively using the class hierarchy until type compatibility
can be concluded. Seen from a static analysis perspective, this implies analysing an unbounded
loop. A safe upper bound that captures the maximum number of iterations, can be established
but will apply for the entire class hierarchy. Despite being a safe bound, it is overly
conservative.

1 // . . .
2 while ( subClass != (unsigned short ) −1) {
3 i f ( subClass == superClass ) {
4 return 1 ;
5 } else {
6 subClass = pgm_read_word(&classes [ subClass ] . superClass ) ;
7 }
8 }
9 // . . .

Listing 10: Excerpt of the checkcast Java bytecode.

The original implementation of the HVM performs type checking in this way (see Listing 10),
but we redesigned it in HVMTP to achieve constant time performance. This is done by
exercising the class hierarchy prior to HVMTP construction; type compatibility among the
classes is stored in a matrix that is incorporated in the final HVMTP executable. At runtime,
type compatibility can be conducted by a constant time look-up using a key constructed from
the class to which the object belongs. The details are shown in Listing 11.
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1 unsigned char isSubClassOf (unsigned short subClass , unsigned short superClass )
{

2 uint32 bitIndex = ( subClass << tupac ) + superClass ;
3 uint32 byteIndex = bitIndex >> 3 ;
4 unsigned char b = ∗( inheritanceMatrix + byteIndex ) ;
5 b = (unsigned char ) ( b & (1 << ( bitIndex & 0x7 ) ) ) ;
6 return b != 0 ;
7 }

Listing 11: Using a matrix for determining type compatibility in constant time.

Here inheritanceMatrix encodes type compatibility among all the classes, and the computed
bitIndex is used to extract whether subClass is type compatible with superClass. A value
of 1 represents type compatibility. A trade-off with this solution is that time predictability
comes at the expense of quadratic memory overhead; each element in the inheritance matrix
occupies one bit. Another note on this solution is that it precludes the use of features that
changes the class hierarchy dynamically such as dynamic class loading. However, dynamic class
loading is not supported by the HVM in its current state, and dynamic class loading is also a
contributor to temporally unpredictable behaviour due to dependencies to I/O operations etc.
Therefore, precluding the use of dynamic class loading is not seen as a great deficiency of this
revised design when taking into account that the application domain is embedded real-time
systems. It would be possible to implement constant time dynamic subtype tests and even
support dynamic class loading, at the expense of some extra space per class, using the R&B
subtype test algorithm by Palacz and Vitek [43].

4.5. Strings

In the SCJ specification, it is assumed that applications do not do extensive text processing
and as such, many of the classes in the Java class library such as String and StringBuilder

have disallowed use of instance and class methods. The rationale is to reduce the size and the
complexity of the classes to ease verification [36].

We further assume that strings are immutable, and that the append method of
StringBuilder is not used. This also precludes use of the plus operator on strings, which
is typically compiled as a StringBuilder object on which the append method is used for
string concatenation.

Strings are stored in the constant pool of the associated type and will upon first reference
create a string object. A reference to the string in the constant pool can happen using the ldc,
ldc w, and ldc2 w Java bytecodes. Creating a string object involves allocating a character
array and inserting the characters of the particular string and, furthermore, class initialisers
will be executed. The execution time of this is hence dependent on the particular string. To
avoid this, HVMTP deals with strings in a similar way as exceptions; prior to constructing the
HVM, the class files are analysed to determine potential references to strings in the constant
pool. For this set, HVMTP constructs the string objects in the initialisation phase of the
application. Uses of ldc, ldc w, and ldc2 w during the time-critical phases can be performed
by pushing the string object reference onto the operand stack.

4.6. Platform Dependencies

Many embedded microcontrollers, do not have instruction set support for some arithmetic
operations, e.g., division and multiplication. Whenever unsupported arithmetic operations are
used, the compiler will typically generate code that simulates them. The algorithms used may
be compiler dependent, and may be hard to reason about from a timing analysis perspective. To
circumvent these issues, HVMTP contains a generic software implementation of the operations
that are hardware dependent and whose execution time can be bounded. All multiplications
are conducted using a variant of shift and add multiplication whose execution is bounded
by the number of bits used for integer representations; this value is used as loop bound. A

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



20 K. S. LUCKOW ET AL.

similar rationale is used for the other operators division and the derived operators modulus
and remainder.

4.7. Jump Table

The implementation of the lookupswitch and tableswitch bytecodes in HVMTP contain a
loop looking for the jump target depending on the actual jump index. This loop has been
bounded by Icecap-tools which calculates the constant value of the largest lookupswitch

or tableswitch jump tables. The size of the jump tables are readily available in the class files.
HVMTP has been annotated with these bounds and this information is subsequently used by
TetaSARTSJVM when building the timing model.

4.8. Class Initialisation

Class initialisation happens at unpredictable times, e.g., at the first reference to a static field
using getstatic and putstatic. Further, class initialisers have unpredictable execution times,
since the initialisation of one class, may lead to the initialisation of another if a static field
references a class that is not yet initialised etc. To circumvent the issue, we harness the SCJ
specification, which permits class initialisers to be performed after being loaded into immortal
memory on start-up. Also the SCJ specification dictates, that no properly structured SCJ
application can have cyclic dependencies in class initialisation.
HVMTP accommodates these changes by performing class initialisers during the

initialisation phase together with string and exception object allocations. getstatic

and putstatic have been modified to avoid calling class initialisation code, and therefore
have time-predictable execution.

Applying all the methods to the original HVM implementation, resulted in the time-
predictable variant, HVMTP.

5. TIMING ANALYSIS OF THE HVM

We have used TetaSARTSJVM to construct a complete JVM Timing Model of the supported
Java bytecodes of HVMTP on an AVR ATmega2560 microcontroller. All reported results have
been obtained running the tool on a machine with an Intel Core i7-2620M CPU @ 2.70GHz
with 8 GB of RAM.

Constructing the JVM NTA from the HVMTP executable takes 16 seconds when exception
handling is excluded and 20 seconds when included. The timing model can be integrated with
TetaSARTS, but has other applications. We will here demonstrate the use of TetaSARTSTS

for generating corresponding timing schemes. The timing scheme takes approximately 4.5
hours and approximately 5 days for the model excluding and including exception handling,
respectively. Most of the Java bytecodes take only a few seconds to process, but a few, e.g.,
the three ldc * bytecodes account for approximately two hours of the total processing time.
The ldc * bytecodes may be used to load raw character data that is turned into a Java String
object. This involves calling a constructor of class String, which in turn may set in motion
a non trivial sequence of computations, involving object creation and constructor execution.
Note that both the complete timing model and timing scheme need only to be generated
once; only application-dependent Java bytecodes, i.e. bytecodes for which the loop bounds are
expressed in terms of the properties of the hosting application, need to be processed for each
SCJ application to reflect current temporal behavior. This, along with the fact that many Java
bytecodes are not used by the application (and as a consequence are excluded from HVMTP due
to JVM specialisation) makes generating the timing scheme a less time consuming process in
reality. As an example, we analysed the Minepump control system [8, 24, 38], a representative
example of a real-time system written in Java. It uses 49 distinct Java bytecodes and the
initial timing model and timing scheme take 5 seconds and 6 minutes to generate, respectively.
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The Minepump contains only two application-dependent Java bytecodes (invokevirtual and
invokeinterface) each of which take ∼2s to determine BCET and WCET for. Hence, new
timing schemes reflecting, e.g., further development on the system, can rapidly be generated.
Analysis of applications from the JemBench Benchmark suite [50] shows that BenchLift
uses only 30 distinct Java bytecodes, BenchKfl uses 40 and BenchUdpIp uses 30. A larger
application, TestSCJSingleBoundedBuffer from the HVM distribution, uses 50 distinct Java
bytecodes.

To provide an indication of the validity of the timing scheme, we have compared the results
against measurements obtained using Atmel Studio 6 by calculating the difference between
the cycle counter prior to executing the first statement and after executing the last statement
of the Java bytecodes. Table I shows the results of five samples for selected Java bytecodes.

Bytecode
TetaSARTSTS Measured
BCET WCET Avg Low High

i2l 129 136 130 130 130
aload * 79 79 79 79 79
new 469 1,715 1,568 1,568 1,568
invokedynamic 469 1,715 1,568 1,568 1,568
ireturn 505 1,080 893 865 976
invokespecial 501 977 710 639 772
iinc 191 194 192 192 192

Table I. Validation of the timing scheme. Times are represented in clock cycles.

Let us first note that all results are safe, i.e. for all bytecodes, BCET ≤ Low and High ≤
WCET. Also note that the BCET and WCET of invokedynamic and new are the same since
they share the same implementation as outlined in Section 4.3.3. The reader is referred to the
project website http://people.cs.aau.dk/~luckow/hvmtp where all models are available.
Furthermore, we provide the complete list of application-dependent Java bytecodes.

The results demonstrate that some Java bytecodes have high cycle counts. This is in part
due to the interpreter of HVMTP, see Table II below, but also in part due to the fact that some
Java bytecodes are rather complex and therefore exhibit high cycle counts even when they are
implemented in hardware or microcode. On the JOP, the invokespecial instruction has a
cycle count of 74 + 3 ∗ r + l and ireturn has a cycle count of 23 + r + l where r is additional
wait states for memory access and l is the time on a method cache miss or hit and further
dependent on the length of the method and the memory access time [49].

C KESO FijiVM HVM GCJ JamVM HVMi CACAO HotSpot
(AOT) (AOT) (AOT) (AOT) (Int.) (Int.) (JIT) (JIT)

Quicksort 100 101 136 111 172 697 4,761 147 156
Trie 100 93 54 136 245 772 1,982 294 234
Determinant 100 59 37 96 171 544 1,664 294 48
WordReader 100 251 218 177 328 975 4,979 263 142
Total 100 126 111 130 229 747 3,346 250 145

Table II. Instruction count comparison

Table II presents measurements to compare the execution time of HVM hosted programs
with other similar VMs. The measurements are based on 4 benchmark programs - each written
in both native C and in Java. The first column in Table II shows the execution time of the
program using GCC. The following columns in table II lists the execution times using a range
of Java execution environments. The measurements were performed on a desktop Linux host
(more details about the benchmarks programs are available elsewhere [33]). Numbers have
been normalized, such that the C execution time is index 100. The measurements show that
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for the benchmarks used, the AOT compiler of HVMTP (column HVM) produces code that on
average is approximately a factor 30 faster than using the interpreter (column HVMi).

The reason the HVM interpreter is significantly slower than the JamVM is because of
portability. The HVM interpreter does not utilize well-known optimization techniques such
as computed gotos [25] or register allocated variables (the register keyword in C), since this
would only allow translation of the interpreter source using specific compilers (e.g. GCC).
Additionally the HVM allows control to flow from interpreted code to AOT compiled code
and vice versa. This feature prevents several obvious optimizations in the interpreter.

6. TIMING ANALYSIS OF SCJ APPLICATIONS ON HVM

The previous section showed that each Java bytecode is implemented time predictably by
the HVMTP. This result can be used when analyzing timing properties of SCJ applications
running on the HVMTP.

Using the timing scheme it would be possible to use the CFG, augmented with loop bounds,
of an SCJ application and a classic integer linear programming (ILP) algorithm to estimate
WCET by solving the maximum cost circulation problem of the set of constraints that describes
program behavior. This is an approach used by many tools for timing analysis of C programs, or
rather executables generated from C programs, such as; Ottawa [5], Chronos [34], Heptane [15],
TuBound [46], SWEET [42], Bound-T [29], RapiTime [47] and the aiT WCET Analyzer [23].
Armed with WCET estimates for each task of a system, response time analysis [12] is
traditionally used for concluding on schedulability.

To the best of our knowledge, the WCA [51] tool is the only tool that supports WCET
analysis for Java bytecode using ILP. However, WCA only offers analysis of SCJ applications
running on the JOP.

An alternative to WCET analysis based on ILP and schedulability analysis based on response
time analysis, is model-based timing analysis. A representation, usually a CFG, of the program
under analysis, is translated to a modeling formalism, e.g., Timed Automata, and timing
analysis is then formulated as a reachability problem using an appropriate logic such as
TCTL. Examples of model-based timing analysis tools are; METAMOC [20] for executables,
and TetaJ [24], SARTS [11], TetaSARTS [38] and SymRT [40], a recent extension of
TetaSARTS with symbolic execution. WCA also offers WCET analysis using model checking.

We now summarize the WCET estimates of SCJ applications on the HVMTP running on the
AVR ATmega2560 obtained from TetaSARTS. We also report on the use of TetaSARTS
for automated schedulability analysis. Note that an advantage of using model checking for
schedulability analysis is that task interactions can be taken into account and thus some
systems which might be deemed non-schedulable using a classic response time analysis, might
in fact be found schedulable [11].

As examples of WCET estimates, we have used the Java implementations of a subset of
the algorithms from the Mälardalen WCET benchmark suite [27]: Binary Search (54 LOC),
Bubble Sort (34 LOC), Quick Sort (109 LOC), Insertion Sort (39 LOC), Iterative Fibonacci
(40 LOC), and Select Smallest (137 LOC) which selects the nth smallest number in an array.
For the sorting algorithms, the array is initialized with symbolic values. For Binary Search,
the search key is symbolic. For Fibonacci, the input value, n, is symbolic and constrained such
that 1 ≤ n ≤ 30. For Select Smallest, an array of size 20 is filled with concrete values.

To give indications of the precision of TetaSARTS we compared with measurements of
WCET obtained by using inputs yielding the best and worst case behavior (e.g. for Bubble
Sort, a sorted and unsorted list). The measurements have been obtained by using the debugging
facilities of Atmel Studio 6. For this set of experiments, we used a laptop with an Intel Core
i7-2620M CPU @ 2.70GHz with 8 GB of RAM. The peak memory consumption for symbolic
execution is 500-700 MB for all examples. Uppaal peaks at 50-200 MB during model checking.

Table III shows the comparison of estimated and measured WCET on HVM and AVR
ATmega2560. First note that all estimates indicate safety, that is WCETsymrt ≥ WCETm.
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System
TetaSARTS

Measured WCETWCET Analysis Time
[cycles] [seconds] [cycles]

Binary Search 70,153 2 23,262
Bubble Sort 287,526 31 37,388
Quick Sort 133,134 228 50,437
Insertion Sort 244,680 4 70,028
Fibonacci 142,764 6 29,850
Select Smallest 3,452,824 134 221,223

Table III. Using TetaSARTS for systems on HVM and AVR.

The pessimistic results of TetaSARTS primarily stem from over-approximating the iterations
of nested loops with interdependencies. It might be possible to achieve higher precision using
symbolic execution [40]. Also note that for Quick Sort, it is relatively difficult to exercise
and measure the path yielding the worst case behavior since it depends on the pivot element
selection.

We have used TetaSARTS for schedulability analysis of the Minepump control system [12,
24] (0.5 KLOC), the Real-Time Sorting Machine (RTSM) [11] (0.3 KLOC) and a variant
of MD5SCJ [38] with multiple tasks (0.4 KLOC). For this set of experiments, we used an
application server with an Intel Xeon X5670 @ 2.93GHz CPU and 32 GB of RAM. The results
are shown in Table IV. In all cases, the systems have been deemed schedulable, and the results
show the analysis times and memory consumptions.

The TetaSARTS tool failed the MER Arbiter (3.6 KLOC) that models a flight software
component for the Mars Exploration Rover (MER) developed at NASA JPL [4] and the Lift
real-time system from Jembench [50] with 18 tasks. Even though MER is relatively simple, the
dependency extent computed in TetaSARTS for generating the CFG is too large. However,
these two systems can be analyzed by SymRT. We refer the reader to [40] for a comparison
of TetaSARTS and SymRT (and the WCA tool used on systems running on the JOP).

System Analysis time Memory

Minepump 2s 11 MB
RTSM 1m 2s 17 MB
MD5SCJ 8s 17 MB

Table IV. Schedulability analysis using TetaSARTS.

A further use of the timing model is for easy profiling and performance analysis of the Java
bytecodes described in terms of distributions of execution times [39].

Clearly there are systems for which analysis is intractable. This is for instance the case
for the MER and Lift applications using TetaSARTS. However, note that the number of
branches in the code is the limiting factor to scalability since they are modelled as choices
in the TA. For the schedulability analysis, the number of tasks also affects scalability since
the model grows exponentially in the number of components. However, since schedulability is
viewed as a reachability problem, it may be possible to partly alleviate the scalability issue
by translating the model into the subset of the Uppaal modeling language supported by the
opaal+LTSmin system [18]. In [19] opaal+LTSmin demonstrates a speedup of 40 on a 48 core
machine compared to Uppaal. Future work will investigate this direction.
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Figure 8. Overview of the HVM SCJ architecture.

7. DISCUSSION

A common architectural pattern is to divide a software system into layers separated by
interfaces between the layers. A well known example of this architecture is the Open Systems
Interconnection model (OSI) [56]. Another example is the way that SCJ is implemented in the
HVM as illustrated in Figure 8.

For both the OSI model and the HVM SCJ architecture the dependencies go from upper
layers to lower layers and not vice versa. This means that when implementing, e.g., the HVM
it is not required to know which application it is going to host. The same when implementing
the VM interface: the AllocationArea, Process and RealtimeClock are implemented as
general low level concepts that can be used by any upper layer - not just the SCJ. This
direction of dependencies will seem natural to software architects, indeed dependencies in the
reverse direction, e.g., requiring intimate knowledge about the SCJ or application layer when
implementing the lower layers of the HVM, would be considered unnatural.

When implementing a VM for the Java language it quickly becomes clear that the layered
architecture pattern has been broken in some cases: the JVM needs to know about intimate
details of the upper layers, more specifically the JDK it is going to host. For a bytecode like
idiv it is stated that a java.lang.ArithmeticException must be thrown, so the VM must
know about certain classes being available and their constructor signature. Also allocating
a new exception requires interaction with the memory management system. So a seemingly
simple bytecode like idiv is intimately intertwined with other layers further up the software
stack. For the invokedynamic bytecode this reverse dependency becomes even clearer: as
described in Section 4.3.3 the presence of several classes and APIs are required to implement
its behavior. A bytecode like iadd is well behaved and does not depend on knowledge about
layers further up the software stack.

The presence of these reverse dependencies, of which many others exist than the ones
mentioned above, make the implementation of the VM harder and the timing analysis of
the resulting implementation harder. Even so Section 5 shows that timing results have been
achieved. When designing the next successful programming language we can only encourage
the designers not to introduce reverse dependencies - this will make the job of the virtual
machine and timing tools developers much easier.
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8. CONCLUSION

In this paper, we have presented HVMTP; a time-predictable and portable JVM
implementation with applications in hard real-time embedded systems. It supports all levels
of the emerging Safety Critical Java (SCJ) profile. The HVMTP is based on a redesign of the
HVM, which combines static knowledge about the hosted SCJ application, the programming
and memory model of SCJ, and time-predictable solutions. This paper has presented the
redesign. The techniques presented have been applied to a specific Java VM, but can be
applied to achieve time predictability of other Java VMs as well.

We have demonstrated that a complete timing model of HVMTP can be constructed using
TetaSARTSJVM; a JVM timing model generator part of the TetaSARTS timing analysis
tool-set for Java. The timing model is represented using the Network of Timed Automata
modeling formalism of the Uppaal model checker. Using sup- and inf-queries of Uppaal,
we have determined the Best Case Execution Times (BCETs) and Worst Case Execution
Times (WCETs) of all Java bytecode implementations of the HVMTP yielding a complete
timing scheme for HVMTP on AVR. Our technique and tools are extensible to other platforms
as well. Although not the case for HVMTP as we have demonstrated, we note that due to
the well-known state space explosion problem of model checking, the analysis can become
intractable for complex Java Bytecode implementations. The uses of the timing model and
timing schemes are many; they are directly integrable in TetaSARTS to allow reasoning on
schedulability and timing properties, e.g., WCET, WCRT, and processor utilisation of SCJ
systems on the particular platform. This opens for new opportunities, e.g., a write once, run
wherever possible development approach of SCJ systems by evaluating temporal correctness
on multiple hardware models. The timing model also opens for easy profiling and performance
analysis of the Java bytecodes described in terms of distributions of execution times – we
tested similar ideas in [39].

We also took a first look at how to support the new Java 8 language feature of Lambda
expressions in a Safety Critical Java context, we looked in particular at how the invokedynamic
bytecode can be implemented in a time predicatble way and integrated in the HVMTP. Even
before the introduction of the invokedynamic bytecode the JVM architecture was not well
layered, as implementations of lower layers such the idiv bytecode needs intimate details of
upper layers. This has been further exacerbated with the introduction of the invokedynamic

bytecode as it requires several classes and APIs to be present to implement its correct behavior.
With a time predictable implementation of the invokedynamic bytecode it is now possible for
SCJ applications to take advantage of lambda abstractions to make application code more
concise and elegant. Furthermore, we expect that the SCJ specification itself could be revised
and made more concise and elegant using lambda abstractions.

Future works comprise generating timing models that include the Ahead-Of-Time (AOT)
and hybrid between AOT and interpretation capabilities of the HVMTP. We want to
investigate pre-computing timings of Java bytecodes with application-dependent temporal
behavior, which should improve precision and we want to investigate further improvements
of the precision of the timing model produced by TetaSARTSJVM, e.g. by using symbolic
execution. Furthermore, the HVM facilitates a tight integration with (legacy) code in C, i.e.
handlers in Java can directly be called from handlers in C and visa versa, clearly at the expense
of more complex analysis, however, for some systems it is not possible to port all parts of the
code to Java. We envision that the techniques of I/O automatas [21] used in the ECDAR tool,
analysis of C code using METAMOC [20] and the notion of schedulability abstraction [13]
could be combined to provide a framework for analysis of such mixed applications.
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