
Symbolic Complexity Analysis using
Context-preserving Histories

Kasper Luckow∗, Rody Kersten∗, Corina Păsăreanu∗†
∗Carnegie Mellon University, Moffett Field, CA, USA
†NASA Ames Research Center, Moffett Field, CA, USA

Abstract—We propose a technique based on symbolic execution
for analyzing the algorithmic complexity of programs. The tech-
nique uses an efficient guided analysis to compute bounds on the
worst-case complexity (for increasing input sizes) and to generate
test values that trigger the worst-case behaviors. The resulting
bounds are fitted to a function to obtain a prediction of the
worst-case program behavior at any input sizes. Comparing these
predictions to the programmers’ expectations or to theoretical
asymptotic bounds can reveal vulnerabilities or confirm that a
program behaves as expected.

To achieve scalability we use path policies to guide the symbolic
execution towards worst-case paths. The policies are learned from
the worst-case results obtained with exhaustive exploration at
small input sizes and are applied to guide exploration at larger
input sizes, where un-guided exhaustive exploration is no longer
possible. To achieve precision we use path policies that take into
account the history of choices made along the path when deciding
which branch to execute next in the program. Furthermore,
the history computation is context-preserving, meaning that the
decision for each branch depends on the history computed with
respect to the enclosing method.

We implemented the technique in the Symbolic PathFinder
tool. We show experimentally that it can find vulnerabilities in
complex Java programs and can outperform established symbolic
techniques.

Index Terms—Complexity Analysis; Symbolic Execution;
Guided Exploration

I. INTRODUCTION

Understanding the worst-case algorithmic complexity of
software systems has many important applications, ranging
from compiler optimizations, finding and fixing performance
bottlenecks or improving cybersecurity. Cybersecurity in par-
ticular has become a critical goal for companies and orga-
nizations at every level. Software systems can be vulnerable
to algorithmic complexity attacks when a malicious user can
easily build a “small” input that causes the system to consume
an impractically large amount of resources (time or memory).
By exploiting these vulnerabilities an adversary can mount
Denial-of-Service (DoS) attacks in order to deny service to
the system’s benign users, or to otherwise disable the system.
Algorithmic complexity vulnerabilities are the consequence of
the algorithms used rather than of traditional “software bugs”,
and consequently traditional software bug hunting tools are
of little use to address the problem. Profilers can be used for
finding performance bottlenecks in software, however they are
inherently limited by the number of test inputs used and the
platform on which the profiling was done.

In this paper, we investigate the use of symbolic execution, a
systematic program analysis technique [6], [12], [23], [28], for
finding vulnerabilities that are due to algorithmic complexity
in software applications. Given a program unit that takes
inputs of a specified size, the technique computes the input
constraints together with actual test input values (of input size)
that trigger the worst case complexity of the program. The
analysis is parameterized by a cost model which gives the
cost, such as execution time or memory consumed, for the
execution of each instruction, native call, etc. in the program.

Our analysis employs path guidance policies to efficiently
search for worst-case behaviors. The policies are learned
from the worst-case paths obtained with exhaustive symbolic
execution of the program at small input sizes. The learned
policies are then applied to guide the exploration of the
program at larger input sizes. The intuition is that the worst-
case paths obtained at small input sizes often follow the same
decisions or sets of decisions when executing the conditional
statements in the code. Further, the same decisions are “likely”
followed by the worst-case paths at larger input sizes. Path
policies encode succinctly in a trie data structure the decisions
taken by symbolic execution along worst-case paths.

A distinguishing feature of our work is that we employ path
policies that take into account the history of choices made
along the path to decide which branch to execute for the
conditional statements in the program. For increased precision,
the history computation is context-preserving, meaning that the
decision for each conditional statement depends on the history
computed with respect to the enclosing method.

We show experimentally that the proposed history-based
policies are often precise enough to decide a unique choice
at all decisions. Symbolic execution, guided by these policies,
effectively reduces to exploring a single path regardless of
input size and it scales far beyond the capabilities of non-
guided, traditional symbolic execution for which the number
of paths grows exponentially.

To get insight into the worst-case program behavior for any
input size, we also use techniques to predict the worst-case
behavior based on the data obtained with the guided analysis.
Specifically an off-the-shelf library is used to fit a function to
the data to obtain an estimate of the complexity as a function
of the input size. The results of the function evaluation
on increased input sizes are plotted to give insights to the
developers into the worst-case complexity of the program.
Comparing the estimates to the programmers’ expectations or

to theoretical asymptotic bounds can reveal vulnerabilities or
confirm that a program’s performance scales as expected.

We have implemented the technique for the complexity
analysis of Java programs, using the Symbolic PathFinder
(SPF) tool [28]. However, our approach is general and can be
implemented in the context of other languages and/or symbolic
execution tools.

Our work is part of a larger effort—the ISSTAC
project [4]—which aims to provide an integrated symbolic
execution approach for the worst-case complexity and side-
channel analysis of Java programs. In this paper, we describe
in detail the worst-case analysis component. The technique
presented here was able to identify 87.5% of the intended
algorithmic complexity vulnerabilities in a recent engagement
for the DARPA STAC [1] program. Our specific contributions
are: (a) detailed description of history-based guided symbolic
execution for worst case analysis, (b) theoretical analysis of
proposed approach, (c) evaluation that includes comparison
with previous technique and (d) new case studies showing
vulnerabilities in challenging, realistic applications.

II. BACKGROUND AND MOTIVATION

A. Symbolic Execution

Symbolic execution is a program analysis technique which
executes programs on symbolic instead of concrete inputs [23].
The behavior of a program is described by a symbolic execu-
tion tree where tree nodes are program states and tree edges
are program transitions representing the execution of program
instructions. A state includes the (symbolic) values of program
variables, a path condition PC and a program counter (next
instruction). The path condition is a conjunction of constraints
that characterizes exactly those inputs that follow the path to
the current state. Path conditions are checked using constraint
solvers to detect infeasible paths and to generate test inputs
for feasible paths. To deal with loops and recursion, typically
a bound is put on exploration depth.

B. Motivating Example

Consider the example in Listing 1 taken from an interactive
application that extracts commands from stdin and allows
interaction with a backing store mapping commands to actions.

An adversary is able to exploit the structure of the backing
store by constructing inputs in such a way that all commands
are stored in the same bucket (i.e. by yielding hash collisions).
The vulnerability in the application is that hash collisions are
organized in a list, thus, by carefully crafting the inputs, the
worst-case behavior can be exercised by an adversary.

1 class Entry {
2 String key; Action val; Entry next;
3 public Entry(String key, Action val, Entry next) {
4 this.key = key; this.val = val; this.next = next;
5 }
6 }
7 Entry findEntry(String o, int n, boolean insert) {
8 for(Entry e = table[n]; e != null; e = e.next) {
9 if(e.key.equals(o)) {

10 return e;
11 }
12 }
13 if(insert) {

14 return list = new Entry(o,null,list);
15 }
16 return null;
17 }
18 class String {
19 char[] val;
20 // ...
21 public boolean equals(Object oObj) {
22 // ...
23 String o = (String) oObj;
24 if(val.length == o.val.length) {
25 for(int i = 0; i < val.length; i++) {
26 if(val[i] != o.val[i])
27 return false;
28 }
29 return true;
30 }
31 return false;
32 }
33 }

Listing 1: Excerpt of the backing store of an application that
processes strings (keys) and associates them with actions.

To find an item in the linked list, the findEntry method
iterates over it and compares the key strings to its o parameter
(see Listing 1). Its worst-case behavior is not only determined
by the structure of the hashtable—i.e. reduction to a list
with worst-case linear look-up time—but the values of the
keys play an important role as well: Keys are compared with
the equals method, that, in the case of strings, performs
a character-wise comparison. Consequently, the worst-case
behavior of the application happens when a non-existent key
is looked up and that—when comparing all the entries—the
characters constituting the key strings are equal except for the
last character. This example is typical of applications that use
as keys fixed-sized strings (or codes). If the strings are of
length k, then the worst-case execution time for findEntry
is n× k.

Symbolic execution applied to findEntry for a small
input size can reveal the worst case behavior: The worst-
case path follows the edges marked in bold on the CFG of
method equals illustrated in Figure 1. Note that for condition
c : val[i] 6= o.val[i] in the graph (marked with grey) both true
and false branches are taken along the worst-case path.

We also used the exhaustive exploration for small input
configurations to automatically derive a guidance policy based
on the computed worst-case paths. This policy dictates which
branch to take during symbolic execution to exercise the worst-
case path for arbitrary input sizes. Note that, for input size n
and string length k non-guided analysis needs to explore kn

paths.
We aim to extract a policy that dictates what branch to take

during symbolic execution at any input size. However, a branch
policy that simply dictates which choices to always make (as
in [5]) when executing condition c would be insufficient for
our example: the policy would prescribe both branches so no
savings would be achieved. Thus, in this case, using a simple
memoryless policy would be equivalent to exhaustive analysis:
memoryless guided symbolic execution (for k = 15) becomes
quickly intractable for input sizes n > 3.

To address this, we employ a more sophisticated guidance
policy that takes into account the history of decisions taken
along the worst-case path. For, e.g., key size k = 15, the

l:21-23

val.length == o.val.lengthl:24

i < val.lengthl:25 return falsel:31

c : val[i] 6= o.val[i]l:26

false
1 1

false
2

〈c, false〉
1

2

false
3

〈c, false〉

〈c, false〉

...

1

2

3

...

false
14

〈c, false〉

〈c, false〉

〈c, false〉

〈c, false〉

1

2

3

...

14

true
15

〈c, false〉

〈c, false〉

〈c, false〉

〈c, false〉

〈c, false〉
Policy ρ

return falsel:27 i++l:25

return truel:29

consult ρ
return decision

true false

true

true false

false

Fig. 1: Partial CFG for the equals() method in class java.util.String.
The worst-case path is highlighted. The policy ρ guides the choices for the decision
node marked with gray (for k=15). ρ can be stored as a single path in a trie.

0 5 10 15

0

50

100

150

200

Input Size

C
os

t

Memorylessk=15

History-Basedk=15

ck=15(n) = 15n

Fig. 2: Data set and prediction model
obtained with guided symbolic execution
for k = 15.

false branch must be taken at the decision on line 30 when
comparing the characters for index 0, 1, . . . , 13 of the string;
the true branch must be selected for index 14. Note that this
history records the choices along a worst-case path during
only one call of method equals, but the same pattern is
followed for each invocation of method equals coming from
findEntry. Our technique therefore restricts the computa-
tion and storage of histories only with respect to a calling
context. This has two advantages: first, it increases the preci-
sion of the analysis, since it can compute different histories
for the same condition under different contexts; second, the
histories are small since they are local to a particular context.

Our technique computes automatically the history-based
policy based on an exhaustive exploration at small input sizes
(n = 2 in this case, but in general over a range as we will
describe later). The histories used to define the policy are
encoded efficiently in a trie data structure that offers good
compression: in this example, all 15 policies can be stored
as a single path in a trie, because they are all prefixes of the
longest decision history (see Figure 1).

The computed policy is then used to guide the exploration
at larger input sizes according to the pattern yielding the
worst-case behavior. For the example, when condition c is
evaluated during the guided symbolic execution, the symbolic
path leading to it is examined to see if the previous up to
13 choices on c (the only symbolic condition in the current
context) were all false, in which case the policy dictates that
the false branch should be taken for the current condition
(corresponding to the else branch in the code). If on the other
hand all the previous 14 choices were false, the policy dictates
to take the true branch instead (corresponding to the then
branch in the code).

The guided search reduces to exploring a single path for
an arbitrary number of elements added to the linked list data
structure. We can thus expose the worst-case behavior and the

concrete inputs that will exercise it. Moreover, the technique
computes a model (function) using regression analysis that
characterizes the worst-case behavior as shown in Figure 2.
As a cost model, we used the number of decisions along
an execution path. Note that the history-based policy enables
analysis at much larger inputs compared to memoryless guid-
ance (or exhaustive analysis). Further, it enables obtaining
concrete inputs that trigger the worst-case behavior at large
input sizes, and building a more precise prediction model due
to the larger data set (see Figure 2).

III. COMPLEXITY ANALYSIS

Our approach relies on symbolically executing the program
under analysis for increasing input sizes n and observing the
terminating path with the largest cost for different values
of n. We use P(n) to denote the program under analysis
parameterized by an integer representing the input size. For
instance, for a sorting algorithm, n is the length of the input
list to be sorted; for binary search, it is the number of elements
added to the tree before searching for a key.

We compute the worst-case path in terms of a cost model
C, that assigns a cost (e.g. time or memory consumed) to each
instruction that is executed, native call, disk access etc. For
example, for timing analysis, the worst-case cost is computed
by accumulating the instruction costs along the path.

Let c denote a conditional in the control flow graph (CFG)
of program P(n). A path φ is a finite list of nodes π1, ..., πk

in the symbolic execution tree. Each node π is a 3-tuple of
the form π = 〈c, b, α〉, where c is a conditional in the CFG, b
is either true or false (representing which branch was taken:
“then” or “else”) and α is the context of the decision; it is
represented by the stack frame of the call site. The path can
also be empty, represented by ε. Let length(φ) denote the
length of the path. We use C(φ) to represent the cost of path φ.

ΦP(n) denotes all the paths explored by symbolically executing
program P(n).

The 3-tuple w = 〈φ, C(φ),PC〉 denotes worst case path
information for path φ including its associated cost C(φ) and
resulting path condition PC. Note that multiple paths can yield
the same (maximal) cost—let W = {〈φ∗, C(φ∗),PC〉 | ∀φ ∈
Φ : C(φ) < C(φ∗)} denote this set.

A. Guided Symbolic Execution

We use guidance policies for the efficient exploration of the
symbolic execution tree in contrast to an exhaustive analysis,
that, although guaranteed to find the worst-case path, does
not scale due to the exponential number of paths that need
to be explored and the cost of constraint solving. Intuitively,
the guidance policies encode the decisions in the control
flow graph that the symbolic execution needs to follow to
find “likely” complexity vulnerabilities. A set of policies is
first generated from an exhaustive symbolic execution for a
range of small input sizes, where exhaustive exploration is
still possible and the computation of the worst-case paths is
precise. For each input size in the range, we obtain a policy
that encodes the decisions taken along the respective worst-
case path, as mapped on the CFG of the program. The policies
are unified (as described below) to obtain a more general
policy that is then used to guide the symbolic execution at
larger input sizes. Thus the approach is guided towards the
paths that maximize the cost in terms of the cost model. All
other choices not part of the policy are pruned from the search
space, enabling a scalable exploration in many cases. This is
explained in more detail below.

A policy ρ is a function mapping a CFG branch c to a choice
b ∈ {⊥, {true}, {false},>}. Initially, ρ maps all conditions
of the program to ⊥ = {} (the empty set). We use > =
{true, false} to denote the special value when the policy is
inconclusive as to which choice to make at branch c.

We also introduce policy unification: If ρ1 and ρ2 are two
policies for program P, then their unification, ρ∪ = ρa∪ρb, is
defined as the union of their individual mappings of conditions
to decisions. E.g., for condition c, if ρa(c) → {true} and
ρb(c)→ {false}, then ρ∪(c)→ {true, false}.

We say that a policy is deterministic if it contains no >- or
⊥-values. In this case, the guided symbolic execution results
in only one program path being explored. Note that even if
a policy is not deterministic, it is still very useful, because
it can prune large portions of the exploration space (for the
conditions that are decided uniquely).

The overall algorithm for guided worst-case complexity
analysis is shown in Procedure 1—it has two phases: (i) Policy
generation; and (ii) Policy-guided search.

The algorithm takes as input a program P, two small bounds
on input size L ≤ H to be used for policy generation, and a
large input-size bound N to be used for guided symbolic execu-
tion using the generated policies. Furthermore, C specifies the
cost model and κ is used for computing a rank for each policy
as described in detail later. For simplicity of presentation,
we assume that we use the same cost C in both phases of

Procedure 1 Worst-case complexity analysis.

Input: Program P(n), input size bound N, policy gen. input
sizes L, H s.t. L ≤ H < N, cost model C, policy score κ
{Phase (i)}

1: ρ∪ initialized to ⊥ for all CFG conditions c
2: for j← L to H do
3: We ← exhaustiveWCA(P(j), C)
4: ρbest ← null
5: for all 〈φ, C(φ),PC〉 ∈ We do
6: ρ← computePolicy(φ)
7: if ρbest is null then
8: ρbest ← ρ
9: else if κ(ρ) > κ(ρbest) then

10: ρbest ← ρ
11: ρ∪ ← ρ∪

⋃
ρbest

{Phase (ii)}
12: D← ∅
13: for i← 1 to N do
14: Wg ← guidedSymExe(P(i), ρ∪, C)
15: costi ← C(φ) s.t. 〈φ, C(φ),PC〉 ∈ Wg

16: D← D ∪ 〈i, costi〉
17: 〈f , r2〉 ← regressionAnalysis(D)
18: Output 〈f , r2〉, input constraints and solutions.
19: return

the algorithm. However, in general this is not necessary. For
example, for policy generation, we may want to compute the
paths that visit the largest number of symbolic conditions,
or the largest number of loops, taking into account also the
nested loops. Although these paths may not be “costly” in
terms of execution time at small input sizes, they may be
the “most promising” in indicating the worst-case behavior
for larger input sizes. It can thus make sense to generate
the guidance policies using these paths while in the second
phase to perform iterative guided symbolic execution using
the cost model that, e.g., accumulates the execution time for
each instruction. Our implementation supports these options
to allow for easy experimentation. For our experiments, we
assumed that the cost is the number of decisions along a path.

In Phase (i), policies are computed from the worst-case
path(s) obtained from input sizes L..H. Note that, for a specific
input size there can be multiple paths that yield the same
worst-case cost. For each of these, we compute their rank,
a measure that quantifies how promising the policy is based
on a ranking model κ. E.g., κ can rank the policy based on
how many decisions it can uniquely resolve, i.e. a policy is
better the less >- and ⊥-values it contains.

Policy ρbest stores the best policy for input size j according
to κ. Policy ρ∪ stores the successively unified policy obtained
from exhaustive analysis over input sizes L..j. When all worst-
case paths have been evaluated for a given input size, j, ρbest

is unified with ρ∪. When Phase (i) terminates, ρ∪ stores the
unified policy for input sizes L..H.

In Phase (ii), the unified policy ρ∪ is used for iteratively
computing data points for the regression analysis, for increas-

ing input sizes 1..N. The data points are obtained by a guided
symbolic execution, that upon every decision encountered in
the symbolic execution, consults the policy to resolve it, i.e.
it selects the choice stored in the policy to be explored next,
disregarding all other choices at that decision.

Procedure 2 computePolicy

Input: Worst-case path φ
Output: Policy ρ

1: ρ initialized to ⊥ for all CFG conditions c
2: for all πk = 〈c, b, α〉 where k = 1, ..., length(φ) do
3: ρ(c)← ρ(c) ∪ b
4: return ρ

a) Computing Policies: Given a worst-case path, proce-
dure computePolicy (Procedure 2) iterates through the list
of decisions along the path and updates the policy with the
decision made at each CFG branch along the path.

Procedure 3 guidedSymExe

Input: Program P, policy ρ, cost model C
Output: W = {〈φ, C(φ)〉1, ...}

1: Run symbolic execution on P and record worst-case paths
in set W

2: for all π = 〈c, b, α〉 about to be explored do
3: choice← ρ(c)
4: if choice 6= ⊥ and choice 6= > then
5: Explore b = choice for c in π
6: else
7: Explore both b = true and b = false for c in π
8: return W

b) Policy Guided Exploration: Procedure 3,
guidedSymExe, guides the search using policy ρ. Whenever
a conditional instruction, c, is about to be evaluated, ρ(c)
is used to resolve the choice. If a unique resolution exists,
only that one is explored while all other choices are pruned
from the search. If ⊥ or > is prescribed as next choice
both branches need to be considered and the guided search
degenerates to exhaustive exploration at that condition.

c) Ranking Policies: The initial exhaustive explorations
each potentially yields a set of worst-case paths with the
same maximal cost. From these, policies are computed and
ranked in terms of the policy’s ranking model, κ (Procedure 4).
To compute the policy rank, all branch instructions of the
program are used to determine whether it is deterministic.
For each deterministic choice, the policy rank is incremented.
Essentially, the rank quantifies how many deterministic choices
can be made with the policy.

Ranking the policies is needed, because they differ in how
well they resolve choices in the guided search. For example,
for Insertion Sort, multiple paths yield the same worst-case
cost for same input size, but only one can be used to compute
a deterministic policy. Our experiments have shown that this
ranking is effective allowing us to compute a deterministic

Procedure 4 κ
Input: Policy ρ
Output: Policy rank

1: rank← 0
2: for all c in P(n) do
3: res← ρ(c)
4: if res 6= ⊥ and res 6= > then
5: rank← rank + 1
6: return rank

policy in most cases for the evaluated examples. We plan to
experiment with more complex scoring models that take into
account other statistics, e.g., the number of loops visited, the
maximum depth of visited nested loops and other metrics.

d) Regression Analysis: Finally, the data points
are used for regression analysis (calling procedure
regressionAnalysis) to yield the characterization
of the worst-case complexity. In practice, we rely on multiple
linear regression using the Ordinary Least Squares (OLS)
method: it computes a function that minimizes the differences
of the original data set and the predicted data points from the
function. As is customary with this technique, functions are
evaluated based on the goodness-of-fit, which, conventionally
is the r2 value, i.e. the coefficient of determination defined as
1 − (S/T), with S representing the sum of squared residuals
and T the total sum of squares. Thus, the closer r2 is to 1,
the better is the fit.

The found complexity classes together with the input con-
straints and solutions for each n are output. The user has an
important role in our approach as he/she needs to examine
the data to determine vulnerabilities. To facilitate this process,
our approach provides the visualization of the generated data
using multiple views that allow the analysis to zoom in and
out on specific portions of the plotted graphs. However, the
algorithm may be stopped early (before all the policies are
used) when a vulnerability is confirmed or when the analyst
believes that there is no indication of vulnerabilities.

B. History-based Policies

The policy described above is “memoryless” in the sense
that it does not keep track of previous choices taken along
a path. As demonstrated in the example in Section II-B,
memoryless policies cannot always be used for resolving
decisions deterministically. As another example consider the
case for Merge Sort where the worst-case behavior manifests
itself if alternating choices are made at a certain condition. To
capture this pattern, the policy needs to memorize the previous
decisions. In fact, the worst-case behavior of algorithms is of-
ten not determined by selecting a unique choice at a condition.

A distinguishing factor of our work is that we use poli-
cies that take into account decision histories to address the
limitations of memoryless policies. Intuitively, a decision
history for a node π encodes the sequence of decisions for
each conditional instruction taken along a worst-case path
leading to π. To improve precision and also keep the size of

the generated policy manageable, we use context-preserving
decision histories, denoted H(π) encoding the sequence of
decisions taken in the context α of π, i.e. H(π) = π1, π2, .., πn

such that ∀πi ∈ H(π) : αi = α and π1, π2, .., πn, π is the suffix
of a path leading to π in the symbolic execution tree.

We define ↓ (H(π)) as the sequence of decisions in H(π)
from which we discard the α context component. For example,
for H(π) = 〈c1, b1, α〉, 〈c2, b2, α〉 .. 〈c5, b5, α〉, ↓ (H(π)) is
the sequence 〈c1, b1〉, 〈c2, b2〉 .. 〈c5, b5〉. Thus ↓ (H(π)) can
be seen as an abstraction of H(π).

Furthermore, we use a history size h to define Hh(π)
as the sequence formed by the last h elements of H(π).
Intuitively, the history size h quantifies how much from the
history we want to take into account when computing guidance
policies. For the example above and h = 3, ↓ (H3(π)) =
〈c3, b3〉, 〈c4, b4〉, 〈c5, b5〉.

We can now formalize the concept of a history-based policy.
A history-based policy ρH extends the memoryless policy ρ
with decision history parameter ↓ (Hh(π)) of size h. It is a
function mapping a CFG branch c and ↓(Hh(π)) to a choice
b ∈ {⊥, {true}, {false},>}. Thus, although we compute the
decision histories with respect to context α, we only keep
abstract (suffix) histories in the policy.

The intuition for using a context-preserving history, is that
the policy will be kept small and only contain observed
behaviors of the enclosing method of c. The intuition for using
↓ (Hh(π)) is that when applying the policy in Phase (ii),
we match on behaviors of size h confined to the method
disregarding the calling context making it more general. We
plan to experiment in future work with policies that keep the
context un-abstracted. However such policies will be much
larger and less general.

The notion of a unified policy—as introduced for memory-
less policies—naturally also extends to history-based policies.

In practice, we observe that many histories that define the
policy for a condition c share the same prefix, and thus they
are stored efficiently as a trie as mentioned in Section II-B. An
interesting direction for future work is to generalize the tree
into an automaton via tree folding [17].

Note that the history size can be defined globally to be the
same (usually small) fixed value for all the decisions. The
analyst can then try iteratively to find vulnerabilities using
increasing values of h. If h = 0, this is equivalent to a
memoryless policy. If a global value for history size is not
specified, then ρ is defined with respect to ↓ (H(π)), i.e. the
histories are not truncated (they are still bounded since the
symbolic execution is bounded).

To accommodate history-based policies in our technique, we
use the same algorithms as the ones presented in the previous
sections but updated for: (1) policy updating and (2) policy
guided search.

For (1), we update line 3 in Procedure 2 as follows:

ρ(c, ↓(Hh(πk)))← ρ(c, ↓(Hh(πk))) ∪ b

The approach is the same as in the memoryless policy
computation except that, for each decision, πk, its associated

decision history ↓(Hh(πk)) is also accounted for. Note that for
multiple calls to the same method, the behaviors observed are
simply added to the policy which summarizes all the behaviors
observed for the condition c.

For (2), we update line 3 in Procedure 3 as follows

choice← ρ(c, ↓(Hh(π)))

We also require that Procedure 3 takes a history-based pol-
icy ρH as argument. Note that during the guided symbolic
execution it may be the case that the history H(π) is much
longer than any of the histories examined when the policy
was built (since the guided symbolic execution is performed
at a larger input size). However, we are able to use the policy
computed based on smaller histories to guide the execution at
larger histories, since we only use the smaller suffix ↓(Hh(π))
to compute the next decision at c. Also note that if a global
value is not specified, h is taken to be the height of the trie
corresponding to the policy at the condition c.

We have also experimented with an adaptive strategy for
computing values of h at each c such that the resulting policy
has the best rank (i.e. leads to the most deterministic choices).
Intuitively, this can be computed iteratively increasing the
history size (starting from 0 up to the trie height) until all
choices can uniquely be determined or the trie height has been
reached. However in our experiments we have not noticed any
significant difference with this more sophisticated strategy.

C. Theoretical Guarantee

We provide a theoretical guarantee that when we unify
policies from L up to a sufficiently large size, heuristic
exploration using that policy is guaranteed to lead to the worst
case for any input size (starting with L).

Theorem 1 Let ρL..H
∪ =

⋃
n=L..H ρn denote the unification of

the policies obtained from the analysis at input sizes L..H, for
same history size h. Then there exists a sufficiently large M
such that the policy ρL..M

∪ accurately predicts the worst-case
path for any input size that is greater or equal to L.

Proof: First observe monotonicity of policy generation.
We define ρ1 ⊆ ρ2 as ∀i≥L{Φi,ρ1 ⊆ Φi,ρ2}, where Φi,ρ is the
set of paths explored with policy ρ at input size i. Unification
of policies leads to increased coverage of program behaviors:
if ρL..n+1
∪ = ρL..n

∪
⋃
ρn+1 then ρL..n+1

∪ ⊇ ρL..n
∪ , since ρn+1 can

only add more behaviours that are allowed. Since the number
of choices for the policy is finite and the history size is fixed,
there is a finite number of possible policies. Hence, there exists
an M for which ρL..M

∪ is ’largest’ according to ⊆ and thus
includes the worst-case path for any input size that greater or
equal to L.

Note that in practice we observed that often we could
find a deterministic policy for some L = H that would
correctly explore the worst-case path up to N in our algorithm.
This is primarily attributed to the fact that policies are often
invariants, i.e. the behaviors they prescribe are unaffected
by input size as is the case for our motivational example,

Find Entry. For this example, the policy obtained at size 2
is the same as the one obtained at size 3 etc. but different
than the policy obtained at sizes 0 or 1. Thus the unified
policy (over 2..3) is still deterministic. The same pattern was
observed in the other examples (but not in Merge Sort—see
discussion in the next section). We therefore fixed L = H
in our experiments. This simplification reduced significantly
the parameter space for our analysis while still computing the
correct complexity classes for all examples.

IV. EVALUATION

We have implemented the presented analysis in Symbolic
Pathfinder (SPF) [28], a symbolic execution tool for Java
bytecode programs that is part of the Java Pathfinder (JPF)
toolset [21]. The implementation uses two JPF listeners
corresponding to the two phases described in Procedure 1.
In addition, a JPF shell wraps the analysis and extracts
the relevant data for function fitting and visualization (with
JFreeChart [20]) of the results. The regression analyses used
for function fitting are implemented using the Ordinary Least
Squares multiple linear regression component of Apache
Commons Math [8]. The trie data structure representing the
histories defining the policies can be stored on disk and reused.

We evaluate the presented analysis against a set of challeng-
ing Java benchmarks provided to us by RAYTHEON BBN and
CYBERPOINT LLC as part of an engagement for the DARPA
STAC [1] program. In total, we identified 21 complexity
vulnerabilities (87.5% of intended vulnerabilities) in these
programs with this technique presented in this paper. We
describe a sub-set here (they are available on request).

URI Verifier is a component in a web blogging platform,
BLOGGER; ZIP Decompressor is a component in a text anal-
ysis and encryption program, TEXTCRUNCHR; Find Entry is
the motivating example; NGram Score is another component
from TEXTCRUNCHR that scores all n-grams in substrings of
length n against a database of n-grams; Password Checker is
a component that checks a 32 byte hash of a password against
the hashes of the last N passwords to prevent re-use; Database
B-Tree is a component in the LAWDB system, which uses a
B-tree for storing an index over law personnel.

We also analyzed the benchmarks from WISE [5] repre-
senting the standard implementations of classic algorithms.

We devised a workflow for applying our technique in
practice. The first step is to find a “good” policy by iteratively
trying the analysis for small input ranges (s.t. H = L) and
h = 0 and then studying them in terms of the ranking score, κ,
and visually using a projection on a rendered CFG. If a policy
has few deterministic choices (low κ), we increase the history
size, h, to see if it leads to a more deterministic policy (i.e.
increasing κ). We prioritize the policies over values of L = H
and h according to κ. When the policies have been evaluated,
we apply them—in priority order—with guided analysis up
to N and study the fitted functions obtained from the data
collection. We found that, in practice, applying this workflow
is effective and can be largely automated by a script.

The results of our experiments (for the best parameters we
found) are shown in Table I. The techniques that we compared
are exhaustive symbolic execution i.e. without policies (row
Exh.), memoryless guided analysis (m.l.) and, where applica-
ble, history-based guided analysis. The experiments were run
on a Dell XPS 13 notebook with a 6th Generation Intel Core
i7 processor and 8GB RAM running Ubuntu Linux. We used
Z3 [10] as solver for all experiments.

The results show that, as expected, exhaustive symbolic
execution is often only feasible up to small input sizes but
guided symbolic execution scales much better allowing us to
find the correct worst-case behavior for these examples. For the
NP-complete Traveling Salesman Problem, we can explore up
to N = 7, but note that regardless of input size, our technique
reduces to exploring a single path since we can compute a
deterministic policy that correctly resolves all choices. When
memoryless policies are incapable of resolving all choices,
the results show that the history-based policies are beneficial,
enabling more deterministic resolutions of decisions.

Another observation is that different policies obtained at
different input sizes can still lead to the discovery of the
correct complexity classes, although they are not invariant.
This is illustrated by Merge Sort: For input size 7, the
policy prescribes one alteration scheme when merging the two
sub partitions, while for input size 8, the opposite alteration
scheme is prescribed by the policy. However, when unifying
the two policies, the result is a policy that is not deterministic,
that while correct, does not prune many choices because it
prescribes both contradictory alteration schemes. For input
size 7 (8), exploration at input size 30 reduces to a single
path with 128 (132) choices resolved (hence none unresolved
choices). For the policy obtained as the unification of input
size 7 and 8, exploration at input size 30 only resolves 31
choices, and leaves 1844 choices unresolved (totalling 923
paths explored). This also suggests a direction for future work,
where we can use different unification scheme for policies, e.g.
we can simply keep the union of policies discovered at smaller
sizes and apply them at larger sizes. Such scheme would still
ensure that we eventually find the worst-case path at any size.

Database B-Tree used a nondeterministic policy. However
the guided analysis scales by several orders of magnitude
compared to the exhaustive analysis.

In order to fit a function at least 5 data points are needed. For
complex algorithms, such as the Traveling Salesman Problem,
this would be impossible without policy-guided exploration.
In other cases, obtaining more data points increases precision
of the fitting function. From a collection of fitting functions
corresponding to the standard complexity classes, column
“Complexity” shows the best fit found based on a combination
of highest r2 and visual interpretation of the results.

Note that it is not always possible to determine the correct
complexity class based on r2, even though the correct worst-
case path was discovered. For example, for Red Black Tree, a
power function is a slightly better fit than a logarithmic model
(see Figure 3). For such cases the analyst needs to visualize
the data and select the best fit (clearly logarithmic here). In the

TABLE I: Experimental results. For each benchmark we list nr. of explored paths and run-time for a series of input sizes.
Policies were inferred at input size Npol. The h column specifies the history size or m.l. when a memoryless policy sufficed.

Benchm. Set-up Input Size (N) Complexity r2L=H h 1 2 3 4 5 10 15 20 30 100 250 1000

Blogger URI
Verifier

Exh. Paths 55 2213 114533 - - - - - - - - -
Time 0:02 0:25 26:46 - - - - - - - - -

1 m.l. Paths 8 57 155 351 743 - - - - - - - O(n2) 0.99986Time 0:00 0:02 0:31 4:45 45:09 - - - - - - -

TextCrunchr
ZIP

Decompressor

Exh. Paths 3 4 5 6 7 12 17 22 32 102 252 1002
Time 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:01 0:06 1:27

1 m.l. Paths 1 1 1 1 1 1 1 1 1 1 1 1 O(n) 1.0000Time 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:01 0:06 1:28

Find Entry
(k = 15)

Exh. Paths 16 376 11656 - - - - - - - - -
Time 0:01 0:07 4:59 - - - - - - - - -

2 m.l. Paths 16 376 11656 - - - - - - - - -
(too few predictors)Time 0:01 0:07 4:09 - - - - - - - - -

2 14 Paths 1 1 1 1 1 1 1 1 1 1 1 - O(n) 1.0000Time 0:01 0:01 0:02 0:02 0:02 0:04 0:08 0:12 0:24 6:00 2:00:32 -

TextCrunchr
NGram Score

(trigrams)

Exh. Paths 4 13 40 121 364 88573 - - - - - -
Time 0:00 0:00 0:00 0:01 0:02 3:15 - - - - - -

2 m.l. Paths 4 13 40 121 364 88573 - - - - - - O(n) 1.0000Time 0:00 0:00 0:00 0:01 0:02 5:10 - - - - - -
2 2 Paths 1 1 1 1 1 1 1 1 1 1 1 1 O(n) 1.0000Time 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:02 0:15 7:07

Password
Checker
(k = 32)

Exh. Paths 33 1057 33825 - - - - - - - - -
Time 0:01 0:04 2:00 - - - - - - - - -

2 m.l. Paths 33 1057 33825 - - - - - - - - -
(too few predictors)Time 0:00 0:03 2:04 - - - - - - - - -

2 31 Paths 1 1 1 1 1 1 1 1 1 1 - - O(n) 1.0000Time 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:04 - -

LawDB
Database
B-Tree

Exh. Paths 3 13 75 541 4683 - - - - - - -
Time 0:01 0:01 0:01 0:01 0:07 - - - - - - -

2 m.l. Paths 2 3 4 3 3 4 5 5 6 8 583 - O(log n) 0.99755Time 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:29 06:23 -

Sorted
Linked-List

insert

Exh. Paths 1 2 6 24 120 - - - - - - -
Time 0:00 0:00 0:00 0:01 0:01 - - - - - - -

3† m.l. Paths 1 1 1 1 1 1 1 1 1 1 - - O(n) 1.0000Time 0:00 0:01 0:01 0:01 0:01 0:01 0:02 0:04 0:10 58:51 - -

Heap insert
(JDK 1.5)

Exh. Paths 1 2 4 12 36 20736 - - - - - -
Time 0:00 0:00 0:00 0:00 0:01 0:46 - - - - - -

2 m.l. Paths 1 1 1 1 1 1 1 1 1 1 1 1 O(log n) 0.99699Time 0:00 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:02 0:09 0:53

Red-Black
Tree search

Exh. Paths 3 10 42 216 1320 - - - - - - -
Time 0:00 0:00 0:00 0:01 0:03 - - - - - - -

8 m.l. Paths 1 1 1 1 1 1 1 1 1 1 1 - O(log n) 0.99837Time 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:02 0:25 7:09 -

Quicksort
(JDK 1.5)

Exh. Paths 1 2 6 24 120 - - - - - - -
Time 0:00 0:00 0:00 0:00 0:01 - - - - - - -

8 m.l. Paths 1 1 1 1 1 1 1 1 1 1 - - O(n2) 0.99997Time 0:00 0:01 0:01 0:01 0:01 0:01 0:02 0:06 0:09 37:42 - -

Binary
Search Tree

search

Exh. Paths 1 3 13 75 541 - - - - - - -
Time 0:00 0:00 0:00 0:01 0:02 - - - - - - -

3 m.l. Paths 1 1 1 1 1 1 1 1 1 - - - O(n) 1.0000Time 0:00 0:01 0:01 0:01 0:01 0:01 0:03 0:05 0:13 - - -

Merge Sort
(JDK 1.5)

Exh. Paths 1 2 6 24 120 3628800 - - - - - -
Time 0:00 0:00 0:00 0:00 0:01 2:06:22 - - - - - -

7 m.l. Paths 1 1 1 1 1 251 - - - - - - O(n log n) 0.99591Time 0:00 0:00 0:00 0:00 0:00 0:02 - - - - - -
7 1 Paths 1 1 1 1 1 1 1 1 1 1 1 - O(n log n) 0.99941Time 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:01 0:11 2:03 -
8 1 Paths 1 1 1 1 1 1 1 1 1 1 1 - O(n log n) 0.99962Time 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:11 1:33 -

Bellman-Ford‡
Exh. Paths 1 2 63 - - - - - - - - -

Time 0:00 0:00 0:02 - - - - - - - - -
2 m.l. Paths 1 1 1 1 1 1 - - - - - - O(n3) 1.0000Time 0:00 0:00 0:00 0:01 0:02 6:19 - - - - - -

Dijkstra’s‡
Exh. Paths 1 1 4 56 2592 - - - - - - -

Time 0:00 0:00 0:00 0:00 0:10 - - - - - - -
3 m.l. Paths 1 1 1 1 1 1 1 1 1 - - - O(n2) 1.0000Time 0:00 0:00 0:00 0:00 0:00 0:01 0:03 0:11 1:16 - - -

Traveling
Salesman‡

Exh. Paths 1 1 3 297 - - - - - - - -
Time 0:00 0:00 0:00 0:02 - - - - - - - -

3 m.l. Paths 1 1 1 1 1 - - - - - - - O(n!) 0.99935Time 0:01 0:01 0:01 0:02 0:04 - - - - - - -

Insertion
Sort

Exh. Paths 1 2 6 24 120 3628800 - - - - - -
Time 0:00 0:00 0:00 0:00 0:01 1:37:46 - - - - - -

2 m.l. Paths 1 1 1 1 1 1 1 1 1 1 1 1 O(n2) 1.0000Time 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:02 0:05 1:10
†In [5], the policy is found at input size 2. There appears to be a mismatch between the concept of input size for their policy and for their measurements. As N, we
use the size of the list into which an element is inserted. It does not include that inserted element.
‡The graph used in these examples are constructed as a grid, thus the number of edges is |E| = |V|2 − |V|. Therefore, the complexity of Bellman-Ford is
|V|2 (|V| − 1), i.e. cubic as found by the analysis. The Dijkstra’s algorithm implementation used does not use a min-priority queue, thus has theoretical complexity
|V|2, which is confirmed by our technique.

future, we plan to experiment with other regression analyses
that allows to enforce constraints on the parameters, such as
the non-negative least squares method, to obtain better fits.

Note also that a related approach, WISE, uses guided
symbolic execution for worst-case analysis, although the work
is done in the context of dynamic (not static as we do here)
symbolic execution and also their heuristics are different, as
they use the concept of branch generators, which do not take
into account the history of computation within calling contexts.
Our results on the benchmarks from WISE show that our
memoryless analysis is equivalent to WISE [5] as we obtain
similar results for all the examples where a history is not
needed. We do improve on WISE for those examples where
an extra row using history is shown, e.g. for Merge Sort.

With the policy found without history, it is not feasible to
explore the search space for N > 10—WISE obtains a similar
result. In fact the memoryless policy is not much better than
exhaustive analysis for this example. However, when using a
history-based policy, the guided search prunes all paths except
the worst-case path—it is a deterministic policy that optimally
resolves choices enabling exploration up to N = 250. For
this example, taking into account the calling context is also
important: the policy specifies which choices to make for a
condition in the Arrays class, which is in a loop. Since the
Merge Sort implementation is recursive, these decisions must
only happen for the current call to Merge Sort, i.e., the context
must be taken into account for correct resolution of decisions.
We also conjecture that WISE would not work on the other
examples that require context-preserving histories.

A. Vulnerability Analysis

a) URI Verifier: We found a vulnerability in the URI ver-
ification component of BLOGGER, a web-blogging platform.

We applied symbolic execution to the URI Verifier Com-
ponent using a symbolic URI string (character array with
symbolic values). N denotes the length of the URI. We
quickly found for L = H = 1 and h = 0 a deterministic
policy that would enable guided analysis to explore up to
N = 5. The data points were sufficient for the regression
analysis (see Figure 4) with the results indicating that the
algorithm is exponential with respect to the length of the
URI; an unintended algorithmic design flaw in the order of
the complexity class. The vulnerability is that an adversary
has full control of the URI contents, and therefore can trigger
unusually long processing times effectively making the service
unresponsive to its benign users (DoS attack).

Our technique also outputs concrete inputs that expose the
vulnerability: they show that the URI must be composed of all
lower-case and unique characters. We validated it by making
the HTTP request http://localhost:8080/abcde,
which indeed triggers the exponential running time that can be
exploited. For URIs not conforming to the constraints found by
our technique, the running time is linear and not exploitable.

b) ZIP Decompression: We also found a vulnerability in
the ZIP Decompression component of TEXTCRUNCHR, a text
encryption and analysis program.

We applied our technique by symbolically constructing a
ZIP file, with the number of files controlled by a symbolic
variable. Since TEXTCRUNCHR only allows a single input file,
the input size N represents a nesting of ZIP files, i.e. a ZIP file
containing another ZIP file etc. We obtained a deterministic
policy for L = H = 2 and h = 0 and then performed guided
symbolic execution up to input size 400 with increments of
10. The results—shown in Figure 5—indicate that the number
of files (or ZIP nesting levels) to be processed is unbounded,
since the number of files processed is linear in the nesting level
(1..N). In other words, we can keep adding new elements to
the queue during each loop iteration and maintain a queue size
that does not exceed the bound.

Solving the constraints show that the (symbolic) content of
a ZIP file does not need to contain other elements except for
the nested ZIP file—this will yield a queue with at maximum
two elements at any given time. TEXTCRUNCHR bounds the
input file to 5MB, and we used this information along with
the constraints to construct a ZIP quine (ZIP that extracts
a copy of itself) of 440 bytes. With this file, the program
does not terminate, exposing a complexity vulnerability. The
vulnerability here is that the data guard is incorrect: instead
of bounding the maximum queue size, the bound should have
been on the number of files processed.

V. RELATED WORK

The closest to our work is WISE [5], which uses dynamic
symbolic execution and “branch generators” for complexity
analysis. As discussed for the experiments the WISE approach
may fail to compute the worst-case execution behavior of a
program, since it may not prune enough executions for larger
input sizes. For example, for Merge Sort, WISE’s policy still
leaves an exponential search for worst-case executions [5]
while with our approach we can efficiently find the worst-
case behavior. This is due to the fact that our policies are
both history-based and context-preserving, which enable us
to efficiently determine worst-case bounds for programs that
could not be analyzed before. Another, minor, difference is
that our approach is implemented in the context of classical
symbolic execution. More significantly, we integrate function
fitting to derive the worst-case estimates. We found that
without function fitting, it is very difficult to predict the worst-
case behavior at large input sizes, since symbolic execution,
even with guidance policies, is difficult to scale for very large
inputs. Further, function fitting provides estimates that are very
useful to the analyst who can check them visually and further
attempt to prove them formally using theorem proving.

Another related work [34] employs symbolic execution for
load testing by performing an iterative analysis for increasing
exploration depth. At each iteration, the paths that are most
promising in terms of a resource consumption measure are
selected to be explore at the next iteration, while the other
paths are discarded. Thus, similar to our method, this work
is also guided, however it could not be used directly for
estimating the worst-case algorithmic behaviour. To see this
note that all the paths explored up to the same depth will have

0 50 100 150 200 250 300

10

20

30

40

Input Size

C
os

t
Data Set log n
n n log n

n2 n3

nc cn

Fig. 3: Fitting functions for Red Black Tree Search.

1 2 3 4 5
0

200

400

600

800

Input Size

C
os

t

Guided analysis results

c(n) = e(3.28+0.61∗x)

Fig. 4: Results for URI Verifier.

0 100 200 300 400
0

100

200

300

400

Input Size

C
os

t

Guided analysis results

c(n) = 1.00 + n

Fig. 5: Results for ZIP Decompression.

the same number of steps, leading to the same algorithmic
execution time, thus leading to no pruning.

Probabilistic symbolic execution is used in [7] to infer the
performance distribution of a program according to given
usage profiles. The technique aims to obtain a diverse set
of program behaviors by guiding the execution along high-
and low-probability program branches; it further uses loop
unrolling to try to force the longest execution through the
loops. Thus unlike our work, the technique does not learn how
to guide execution at larger configurations from the analysis
of smaller configurations. As a result the technique does not
yet scale for large programs; this is due also to the more in-
volved probabilistic computation. An interesting direction for
future work would be to combine the probabilistic exploration
from [7] with the policy learning that we employ to obtain
diverse policies for guided execution at larger configurations.

Static analysis has been used to compute conservative
bounds on looping programs [2], [15], [16], by computing
bounds over ranking functions. These are functions on loop
variables which keep decreasing with each loop iteration
and are difficult to derive automatically when the functions
are non-linear. Static analysis produces an upper bound on
the worst-case computational complexity, while our approach
produces a lower bound. Furthermore our approach generates
inputs that expose the worst-case behavior and can be run
independently by the developers. An interesting direction for
future work is to check the estimates we obtained with function
fitting using a static analysis, possibly guided also by the
symbolic constraints generated by symbolic execution.

Related to our work is the large body of research in worst-
case execution time (WCET) analysis—in particular for real-
time systems [18], [19], [26], [31]. There are many techniques
for WCET estimation leveraging model checking [9], [27],
[29], symbolic execution [22], [24], integer linear program-
ming [25], [29], abstract interpretation [33], or a combination,
e.g., [27]. An overview can be found in [32]. Our approach
is orthogonal to this body of work since we target complexity
analysis. Further, most of these techniques assume that loops
have finite bounds, independent of input size, while we esti-
mate the bounds for programs with input-dependent loops.

Profilers [3], [14], [30] are typically used for performance

analysis of programs. Profilers collect various timing statistics
by sampling periodically (or continuously) the program states.
The approach from [13] computes the observed computational
complexity by using profiled data in conjunction with curve-
fitting to compute empirical computational complexity, similar
to our function fitting procedure. However, contrary to our
technique, profilers are inherently limited by the number of
tests used during profiling. Moreover, the profiled data used
to compute the complexity might not constitute the worst-case
complexity. Instead we aim to compute worst-case bounds in
a more systematic way, using guided symbolic execution.

VI. CONCLUSIONS AND FUTURE WORK

We presented a symbolic execution technique for analyzing
the worst-case complexity of programs. The symbolic explo-
ration is guided by policies that take into account the history
of execution along the worst-case paths. We implemented the
technique and showed its promise in practice.

In the future, we plan to improve the policy-guided search
by adding an additional pruning based on decision frequency
invariants, which relate the frequencies with which decisions
are made at a CFG branch. Such invariants can be inferred au-
tomatically using e.g. Daikon [11]. If the policy is inconclusive
at a condition, the path invariant can be consulted to determine
if one of the choices will violate the invariant (in which
case it is pruned from the search). We also plan to extend
the analysis to cater for a more fine-grained, instruction- and
context-dependent modeling of execution costs.

ACKNOWLEDGMENT

We thank RAYTHEON BBN and CYBERPOINT LLC for
providing the use cases. This material is based on research
sponsored by DARPA under agreement number FA8750-15-
2-0087. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA or the
U.S. Government.

REFERENCES

[1] DARPA’s Space-Time Analysis for Cybersecurity program. http://www.
darpa.mil/program/space-time-analysis-for-cybersecurity.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper
Bounds in Static Cost Analysis. Journal of Automated Reasoning,
46(2):161–203, February 2011.

[3] G. Ammons, J. Choi, M. Gupta, and N. Swamy. Finding and removing
performance bottlenecks in large systems. In ECOOP 2004 - Object-
Oriented Programming, pages 170–194, 2004.

[4] D. Balasubramanian, K. Luckow, C. Pasareanu, A. Aydin, L. Bang,
T. Bultan, M. Gavrilov, T. Kahsai, R. Kersten, D. Kostyuchenko, Q.-S.
Phan, Z. Zhang, and G. Karsai. ISSTAC: Integrated symbolic execution
for space-time analysis of code. Under review.

[5] J. Burnim, S. Juvekar, and K. Sen. Wise: Automated test generation
for worst-case complexity. In IEEE 31st International Conference on
Software Engineering, ICSE ’09, pages 463–473, May 2009.

[6] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 5th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 209–224, 2008.

[7] B. Chen, Y. Liu, and W. Le. Generating performance distributions
via probabilistic symbolic execution. In Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016, pages 49–60, 2016.

[8] Apache commons math. https://commons.apache.org/proper/
commons-math/.

[9] A. E. Dalsgaard, M. C. Olesen, M. Toft, R. R. Hansen, and K. G. Larsen.
METAMOC: Modular Execution Time Analysis using Model Checking.
In 10th International Workshop on Worst-Case Execution Time Analysis,
2010.

[10] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[11] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon system for dynamic detection of
likely invariants. Science of Computer Programming, 69(1–3):35–45,
2007. Special issue on Experimental Software and Toolkits.

[12] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In Proceedings of the 26th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages
213–223, 2005.

[13] S. Goldsmith, A. Aiken, and D. S. Wilkerson. Measuring empirical
computational complexity. In Proceedings of the 6th joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages
395–404, 2007.

[14] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph
execution profiler. In Proceedings of the 1982 SIGPLAN Symposium on
Compiler Construction, SIGPLAN ’82, pages 120–126. ACM, 1982.

[15] B. Gulavani and S. Gulwani. A numerical abstract domain based on
expression abstraction and max operator with application in timing
analysis. In A. Gupta and S. Malik, editors, Computer Aided Verification,
volume 5123 of Lecture Notes in Computer Science, pages 370–384.
Springer Berlin Heidelberg, 2008.

[16] S. Gulwani. SPEED: Symbolic complexity bound analysis. In CAV ’09:
Proceedings of the 21st International Conference on Computer Aided
Verification, pages 51–62. Springer, 2009.

[17] A. Gupta, K. L. McMillan, and Z. Fu. Automated assumption generation
for compositional verification. Formal Methods in System Design,
32(3):285–301, 2008.

[18] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic
derivation of loop bounds and infeasible paths for wcet analysis using

abstract execution. In Proceedings of the 27th IEEE International Real-
Time Systems Symposium, RTSS ’06, pages 57–66, Washington, DC,
USA, 2006. IEEE Computer Society.

[19] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. V. Engelen.
Supporting timing analysis by automatic bounding of loopiterations.
Real-Time Syst., 18(2/3):129–156, May 2000.

[20] Jfreechart. http://www.jfree.org/jfreechart/.
[21] Java pathfinder. http://babelfish.arc.nasa.gov/trac/jpf/.
[22] D. Kebbal and P. Sainrat. Combining Symbolic Execution and Path

Enumeration in Worst-Case Execution Time Analysis. In F. Mueller,
editor, 6th International Workshop on Worst-Case Execution Time
Analysis (WCET’06), volume 4 of OpenAccess Series in Informatics
(OASIcs), Dagstuhl, Germany, 2006. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[23] J. C. King. Symbolic execution and program testing. Commun. ACM,
19:385–394, July 1976.

[24] J. Knoop, L. Kovács, and J. Zwirchmayr. WCET squeezing: On-
demand feasibility refinement for proven precise WCET-bounds. In
Proceedings of the 21st International Conference on Real-Time Networks
and Systems, RTNS ’13, pages 161–170, New York, NY, USA, 2013.
ACM.

[25] Y.-T. S. Li and S. Malik. Performance analysis of embedded software
using implicit path enumeration. In Proceedings of the 32Nd Annual
ACM/IEEE Design Automation Conference, DAC ’95, pages 456–461,
New York, NY, USA, 1995. ACM.

[26] Y.-T. S. Li, S. Malik, and B. Ehrenberg. Performance Analysis of Real-
Time Embeded Software. Kluwer Academic Publishers, Norwell, MA,
USA, 1998.

[27] K. S. Luckow, C. S. Păsăreanu, and B. Thomsen. Symbolic execution
and timed automata model checking for timing analysis of Java real-
time systems. EURASIP Journal on Embedded Systems, 2015(1):1–16,
2015.

[28] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level symbolic
execution and system-level concrete execution for testing NASA soft-
ware. In Proceedings of the 2008 International Symposium on Software
Testing and Analysis (ISSTA), pages 15–26, 2008.

[29] M. Schoeberl, W. Puffitsch, R. U. Pedersen, and B. Huber. Worst-
case execution time analysis for a java processor. Softw. Pract. Exper.,
40(6):507–542, May 2010.

[30] G. Sevitsky, W. D. Pauw, and R. Konuru. An information exploration
tool for performance analysis of java programs. In TOOLS Europe
2001: 38th International Conference on Technology of Object-Oriented
Languages and Systems, Components for Mobile Computing, pages 85–
101, 2001.

[31] R. Wilhelm. Determining bounds on execution times. In Embedded
Systems Design and Verification - Volume 1 of the Embedded Systems
Handbook, page 9. 2009.

[32] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The worst-
case execution-time problem—overview of methods and survey of
tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53, May 2008.

[33] R. Wilhelm and B. Wachter. Abstract interpretation with applications to
timing validation. In A. Gupta and S. Malik, editors, Computer Aided
Verification, volume 5123 of Lecture Notes in Computer Science, pages
22–36. Springer Berlin Heidelberg, 2008.

[34] P. Zhang, S. G. Elbaum, and M. B. Dwyer. Automatic generation of
load tests. In 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), Lawrence, KS, USA, November 6-10,
2011, pages 43–52, 2011.

http://www.darpa.mil/program/space-time-analysis-for-cybersecurity
http://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/
http://www.jfree.org/jfreechart/
http://babelfish.arc.nasa.gov/trac/jpf/

	Introduction
	Background and Motivation
	Symbolic Execution
	Motivating Example

	Complexity Analysis
	Guided Symbolic Execution
	History-based Policies
	Theoretical Guarantee

	Evaluation
	Vulnerability Analysis

	Related Work
	Conclusions and Future Work
	References

