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Svenning Jensen · Kasper Søe Luckow · Anders P. Ravn · Hans

Søndergaard · Bent Thomsen

Abstract We present a rationale for a selection of tools

that assist developers of hard real-time applications to

verify that programs conform to a Java real-time pro-

file and that platform-specific resource constraints are

satisfied. These tools are specialized instances of more

generic static analysis and model checking frameworks.

The concepts are illustrated by a case study, and the

strengths and the limitations of the tools are discussed.
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1 Introduction

For systems that have to meet strict timing or safety

requirements it is often argued [?] that code should be

automatically synthesised from high level models that

facilitate formal verification of critical timing and safety

properties. By systematic and careful code synthesis, it

is possible to retain all or most of the important prop-

erties of the high-level model in the generated code.

In this way formally verified, highly robust and reli-

able software can be obtained at a much lower cost

than similar software developed in a more traditional

way. However, it is likely to still take a while before the

goal of fully automated code synthesis is reached. That

raises the question of what researchers can do in the
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meantime to improve quality and efficiency of the de-

velopment process? In [?] it was hypothesised that the

incremental move away, in the embedded systems com-

munity, from the C programming language and real-

time kernels, towards more structured languages with

good tool support at all levels, would improve the de-

velopment process.

In this article we report on recent work, enhancing

the suitability of Java for developing embedded real-

time systems. We have chosen to work with Java be-

cause it comes with several defined and documented

profiles for real-time programming and because the pro-

files are supported by platforms that have been demon-

strated to work. The profiles and platforms are dis-

cussed in Section 2. However, the profiles cannot in

themselves ensure that applications perform predictably.

There are many issues, some examples are: ensuring

that only allowed features and constructs are used, check-

ing that platform resources (memory and processor time)

meet the demands of the executing program, and pro-

viding interfaces to special purpose hardware. Therefore

we have engaged in harnessing theories as well as imple-

menting and adapting tools to assist in verifying prop-

erties dictated by the chosen profile and conformance

to platform limitations. The tools and their specialisa-

tion(s) are introduced in Section 3.

Tool use is illustrated by results from a case study

in Section 4. It is the mine pump example well known

from the literature. As explained in connection with the

case study, the experiments have been encouraging. We

will then, in Section 5, discuss related work, and finally

in Section 6, comment on limitations of current tools

and the need for tool integration and specialization.

This outlines what kind of theories and tools we expect

to see harnessed in a truly supportive Real-Time Java

development environment.
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2 Java and Real-Time Systems

Since its appearance in 1995, Java has spread tremen-

dously as a software development language; it is used

to program all kinds of software from servers to smart

cards, and it is now the first (and often the only) lan-

guage for young programmers joining the industry. Es-

pecially the Internet propelled Java into mainstream

computing, because there was a need for a language

that was portable and truly object-oriented, eliminat-

ing the error-prone programming of memory allocation

and pointer manipulation.

Java features a clean object-oriented model-based

on single inheritance with the notion of interfaces to

facilitate a safe, albeit limited, form of multiple in-

heritance. Java presents a relatively clean type system

based on a limited set of primitive types and an unlim-

ited set of constructed types, called reference types, all

belonging to a type hierarchy with the type Object at

the top. Java achieves portability via the Java Virtual

Machine (JVM) which implements a managed heap,

where all objects are allocated and where objects are

subjected to garbage collection when they are no longer

in use by the program. Java has a wide variety of control

features such as sequencing, selection statements and

loops. Java also features a clean exception model and

the notion checked exceptions, i.e. exceptions are part

of the interface of methods and will be checked by the

type checker, except for a small number of unchecked

exceptions.

Java was one of the first mainstream programming

languages to have a platform independent concurrency

model-based on a thread model. A thread object has
a designated run method that is executed when the

thread’s start method is called. Threads can collabo-

rate based on a shared memory model, and Java fea-

tures lock based concurrency control built into every

object created by a Java program. Locks are not ac-

quired explicitly, only implicitly via synchronized meth-

ods and synchronization blocks. Threads can be sus-

pended waiting on a lock and may be woken up by no-

tify signals issued by another thread holding the given

lock. Java has a soft real-time sleep method that sus-

pends a thread for a designated duration.

Originally Java was developed as a programming

language for embedded systems, although several of

its features make it less suited for predictable, real-

time embedded systems: The virtual machine, that gave

portability, was considered inefficient both in terms of

time and space. Furthermore, the automatic garbage

collection and dynamic class loading made it impossible

to analyse and predict execution time and memory con-

sumption. Thus several variants, so called profiles, have

been proposed to eliminate the features deemed unsuit-

able for hard-real time embedded system programming.

We review three of the profiles in the following subsec-

tions.

2.1 RTSJ Profile

The Real-Time Specification for Java (RTSJ) [?] has

been specified in order to rectify a number of issues

preventing the adoption of the Java programming lan-

guage for real-time systems development. The RTSJ 1.0

specification is formally defined in the JSR 1 [?] and is

currently being revised to RTSJ 1.1 in JSR 282 [?].

RTSJ considers both soft and hard real-time sys-

tems. The specification introduces a number of con-

cepts related to real-time systems for the use of pro-

grammers; it changes parts of the Java semantics which

are problematic for real-time systems; and it provides

facilities allowing the programmer to avoid certain el-

ements of Java. These additions and changes can be

divided into eight categories: schedulable objects, mem-

ory management, real-time threads, asynchronous event

handing and timers, asynchronous transfer of control

(ATC), physical and raw memory access, time values

and clocks, and resource sharing and synchronisation.

Most notably, the concept of schedulable objects has

been introduced. Schedulable objects are supported by

a number of classes allowing the programmer to express

real-time concepts such as temporal-scopes, deadlines,

release patterns, priorities, and cost. The existing Java

thread model is extended with schedulable real-time

threads. Furthermore, asynchronous event handlers are

schedulable objects, allowing them to express the same

computations as real-time threads.

Another notable addition is a new memory model,

containing two new types of memory in addition to the

existing heap memory. The purpose of the new mem-

ory types is to avoid allocation in the heap memory,

and thus avoid having a garbage collector to deallocate

memory from the heap. The reason for this change is the

difficulty in implementing a time predictable garbage

collector. The two new memory types are immortal

memory and scoped memory.

Immortal memory allows memory to be allocated only

and is meant for persistent objects needed throughout

the lifetime of the program.

Scoped memory allows both allocation and dealloca-

tion, similar to heap memory, but it only supports deal-

location of its entire memory area. That is, the memory

area is deallocated as soon as no schedulable objects of
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the system use it. This results in a memory area sup-

porting time predictable allocation and deallocation.

The RTSJ maintains support for garbage collection

and heap memory for applications where incremental

soft real-time garbage collection is considered a reason-

able solution. However, after the first version of RTSJ

appeared in 2000, the focus on real-time garbage collec-

tors have grown. Now different real-time garbage collec-

tion algorithms exist [?], and several RTSJ implemen-

tations using these algorithms are available today, such

as Java RTS from Oracle/Sun Microsystems [?], Web-

Sphere Real Time from IBM [?], and JamaicaVM from

Aicas [?].

2.2 SCJ Profile

Since the purpose of the RTSJ is to allow a large range

of real-time applications to be developed, it is broad

and imposes few limitations on how to structure the

application. As an example, both a thread and event

handler paradigm is supported. RTSJ is too liberal to

effectively support programming of high-integrity ap-

plications, therefore effort has been put into defining a

profile targeted at safety-critical systems development

[?,?,?]. The Safety Critical Java (SCJ) profile, devel-

oped under JSR-302 [?] is one of these. The standardi-

sation is still ongoing, and the specification is therefore

only available as a draft as of now.

Safety-critical applications are often subject to a

rigorous certification process, e.g. dictated by a legal

statute. Therefore, the SCJ profile is specifically de-

signed to be amenable to such processes.

The SCJ takes into account the presence of the

RTSJ. Specifically, the SCJ is a specialisation of the

RTSJ where unwanted functionality is avoided using

explicit annotations.

Two major improvements of the SCJ with respect

to the RTSJ are the introduction of missions and com-

pliance levels which both contribute to a simpler pro-

gramming model. The two improvements are described

in the following.

Missions

An SCJ compliant application consists of one or more

missions, which in turn consist of periodic and ape-

riodic event handlers and NoHeapRealtimeThread ob-

jects. Missions go through three different phases during

their life-time, see Figure 1.

Initialisation: Objects, real-time threads, and memory

areas needed throughout the mission’s lifetime are cre-

ated and initialised. The phase is not considered time-

critical, meaning that no real-time constraints are guar-

anteed.

Execution: When the mission is in this phase, the op-

erations are time-critical. Objects created as part of the

initialisation phase can optionally be used and modified

if they are mutable.

Termination: When all handlers and threads have com-

pleted, the mission enters its termination state. Here,

a clean-up can be made, and afterwards the mission

can either terminate entirely or it can re-initialise by

returning to the initialisation phase.

Next mission

Current mission

Initialisation Execution Termination TeardownSetup

Fig. 1 The phases involved in a real-time application’s life-
time.

Compliance Levels

The application area for safety-critical systems is wide.

That is, applications range from complex multi-threaded

to simple single-thread applications. Therefore, since

the cost of a certification process is highly dependent

on the application’s complexity, it is desirable to re-

strict the complexity, thereby easing the certification

process. To accommodate this, the SCJ profile defines

three compliance levels:

Level 0 applications consist of one mission and must

follow the programming model needed for a Cyclic Ex-

ecutive Scheduled (CES) application. The mission can

therefore be thought of as a set of periodic tasks placed

in a schedule on a time-line. The schedule must either

be constructed manually by the programmer or by an

offline tool.

Level 1 applications consist of a single mission. How-

ever, this level uses Fixed-Priority Preemptive Schedul-

ing (FPS), where handlers are scheduled for execution

based on a predefined priority. Handlers are either pe-

riodic event handlers or aperiodic event handlers. Due

to preemption, access to shared objects must be syn-

chronized using a ceiling protocol.
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Level 2 allows applications to use multiple concurrently

executing missions. Besides allowing sequential transi-

tion between missions, level 2 supports nested missions.

Also this level allows the use of NoHeapRealtimeThread

objects in missions, which are real-time threads that do

not access the heap memory, and do not use the Java

methods notify() and wait().

2.3 PJ Profile

Due to the still ongoing effort of standardising the SCJ

profile, we have developed a Predictable Java (PJ) pro-

file [?] suggesting potential simplifications. The primary

contributions of the PJ profile are to redefine the in-

heritance relationship to the RTSJ and to redefine the

programming model of missions.

As previously mentioned, the SCJ profile assumes

the presence of the RTSJ from which it inherits. The PJ

profile recognises that the notion of inheritance has dif-

ferent interpretations depending on its application. The

SCJ profile is an instance of the interpretation when

inheritance is used for limitation, that is, the SCJ, be-

ing a relatively concrete and simple Java profile, inher-

its from the broader, more flexible RTSJ specification.

Effectively, this means that the specifications of sub-

classes do not comply with the specifications of their re-

spective parent classes. In this interpretation, unwanted

functionality from a parent class is in SCJ excluded by

annotations. Specifically, the @SCJAllowed annotation

is used for specifying allowed functionality from parent

RTSJ classes. This has the undesirable property of rely-

ing on external tool support which examines the source

code files to determine whether or not the application

conforms to the profile.

PJ uses inheritance for specialisation, that is, the

specifications of the subclasses satisfy the specifications

of the parent classes. Specifically, the PJ profile has

simpler class hierarchies than SCJ which is extended

from the much broader and flexible RTSJ specification

through inheritance.

SCJ organises schedulable objects into one or more

missions depending on whether the system undergoes

mode transitions during its life-time. The SCJ regards

a mission as a simple container of schedulable objects.

The PJ recognises that missions may in fact be more

than simple containers due to the inclusion of initial-

isation and termination phases of these. These phases

can themselves be controlled by handlers, thus, the PJ

proposes that missions are handlers for the respective

phases.

Besides being a more precise representation of the

mission concept, missions as first-class handlers also in-

troduce a variety of simplifications to the PJ. Initially,

since missions are handlers like the schedulable objects

comprising the system, a new class hierarchy is not nec-

essary.

3 Tool Support for Real-Time Profiles

While the profiles and platforms discussed in the previ-

ous section are important for developing real-time ap-

plications in Java, they do not by themselves provide

any guarantees that the application under development

will actually perform predictably, e.g., not exceed the

time bounds specified and not consume more memory

than available on the platform.

In this section we review the kinds of tools that can

provide a programmer with such guarantees about an

application under development: ensuring that the ap-

plication is compliant with the chosen profile and that

it does not (attempt to) consume more resources than

specified and available on the platform. A vision for

the kind of tool support is shown in Figure 2. For each

tool kind we discuss a few available tools and/or tools

currently under development.

3.1 Conformance Checking

For an application programmer working with the differ-

ent real-time profiles for Java, one of the most funda-

mental tools is a conformance checker that verifies that

an application is indeed conforming to the specified pro-

file. This includes checking that only allowed language

constructs, classes, and libraries are used in the applica-

tion. Also, it may enforce specific coding styles, absence

of particularly problematic or dangerous code patterns,

as well as ensuring that the profile’s real-time facilities

are used consistently.

We have implemented a prototype tool that can

verify that only white-listed, i.e., specifically allowed,

library classes and methods are used in a given appli-

cation. The checker works at the bytecode level and is

implemented using the WALA framework [?].

Furthermore, both SCJ and PJ forbid the use of re-

cursively defined methods. The absence of recursion is

easily checked by ensuring that the call graph of an ap-

plication is acyclic. This is deemd to be sufficiently pre-

cise for the often conservative programming style em-

ployed in safety-critical systems.

3.2 Exception Analysis

An uncaught exception is highly undesirable in most

applications. In an embedded real-time system it may



Harnessing Theories for Tool Support 5

��������

�������

�������

��	�
�������

��������

��	
������

��������

�����������

����������
�������

���	��
�����

�����������

��������

�����������

�����
�����������
�������

������

�����������

�������
��������

��������

�������

��������

�������

��������

�������
������

Fig. 2 Envisioned tool support: A workbench for analysing Real-Time Java programs.

have catastrophic consequences. This is especially so in

Java due to the Java semantics of terminating threads

with uncaught exceptions without any notification. By

performing exception analysis, a tool can automatically

verify that an application will not give rise to any un-

caught exceptions.

We are not aware of any stand-alone tools that per-

form exception analysis as described above. However,

exception analysis is an integrated part of many of the

analyses included in the WALA framework [?].

3.3 Memory Analysis

The scoped memory model, employed by several of the

real-time profiles discussed in the previous section, af-

fords programmers a high degree of flexibility and con-

trol over memory allocation and, in particular, release

of memory that is no longer needed. This control and

flexibility is achieved by organising the physical mem-

ory into scoped memories that are dynamically allo-

cated and deallocated in a structured way, according to

the lifetime of the scopes. Thus, in the simplest case,

scoped memories are allocated following a stack dis-

cipline and, indeed, this is the only allocation order-

ing allowed by the SCJ profile while the RTSJ profile

permits more complex allocation hierarchies for scoped

memories.

With control of memory allocation and dealloca-

tion left in the hands of the programmer also comes

a risk that is not present in garbage collected systems:

namely the possibility of creating dangling references

when deallocating a scoped memory containing an ob-

ject that is referenced in another scoped memory that

has not yet been deallocated. To avoid the problem

of dangling references, the underlying structure of the

scoped memories is used: it is expressly forbidden for a

reference in a memory scope with a longer lifetime (as

determined by its place on the scope stack) to point to

an object in a memory scope with a shorter lifetime.

Thus, in the SCJ profile, references may not point to

objects in scoped memories that are closer to the top,

i.e., scopes that are younger. In the RTSJ profile the

situation is more complicated since the scoped mem-

ories do not follow a strict stack discipline but allows

for the more general structure of a cactus stack. Thus,

the RTSJ potentially makes it even harder for program-

mers to understand the runtime memory structure of a
program, and they must therefore be even more careful

to avoid creating references from a memory scope with

a longer lifetime to an object in a memory scope of a

shorter lifetime.

RTSJ checks this dynamically at run-time, raising

an exception in case of violation of the safety property.

However, this solution is first of all expensive as the

safety property has to be checked for each assignment

and secondly it only removes the danger of dangling

pointers at the cost of introducing an exception, which

is difficult to handle for the programmer.

To help programmers ensure that all references are

pointing in the “right direction”, tool support is essen-

tial. By performing memory analysis a tool can track

the memory scope hierarchy at various program points

and verify that no references violate the rules and thus

potentially result in a dangling reference. Using stan-

dard techniques from static analysis, e.g., adding flow-

and/or context-sensitivity, it is possible to make the

memory analysis more precise on a case by case basis
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and thereby find an acceptable tradeoff between speed

and precision of the analysis for a given project.

Using the WALA framework [?], we have imple-

mented a prototype tool that uses a context-dependent

points-to analysis, using scoped memories as calling con-

texts, to determine if a PJ application can potentially

violate the rules for scoped memory (as defined by the

PJ profile). Due to the straightforward and relatively

simple definition and use of scoped memories in the

PJ profile, there is no need for programmer annotations

or interaction.

3.4 Worst-Case Execution Time Analysis

In order to analyse the schedulability of the set of tasks

comprised by an application, it is necessary to deter-

mine the worst-case execution time of each of the tasks.

This can be done either by static analysis, called WCET

analysis, or by comprehensive simulation. While simu-

lation has the advantage of being relatively easy to set

up and perform, it may give rise to unsound results,

i.e., results that are overly optimistic and underestimate

the true WCET of a task. In non-safety critical and/or

soft real-time applications this may be sufficient, but

for systems with hard real-time deadlines, potentially

performing safety critical tasks, it is essential to have

sound WCET estimates for every task in the system.

For analysis based WCET estimates, the inherent

difficulty of performing precise program analysis is of-

ten evidenced by imprecise and overly pessimistic WCET

analysis results. The lack of precision in WCET anal-

ysis is often exacerbated by some of the advanced fea-

tures present in modern hardware architectures, espe-

cially caching and pipelining, that have major impact

on the actual running time of any given task. One way

of overcoming the challenge presented by modern hard-

ware, is for the WCET analysis to make explicit (ab-

stract) models of the underlying hardware and take the

relevant features into account.

WCET Analyzer

WCET Analyzer (WCA) [?,?] is a static code analysis

tool for conducting WCET analysis of Java bytecode

executed on the Java Optimized Processor (JOP) [?].

JOP is a hardware implementation of the Java Virtual

Machine which emphasises real-time properties. Among

others, JOP facilitates known execution times of each

Java bytecode. The relative simplicity and predictabil-

ity of the JOP architecture [?] and, in particular, the

use of a method cache instead of more general cache

disciplines, makes it significantly easier to perform pre-

cise WCET analysis. In the following we describe the

WCET Analyzer tool for JOP.

WCA employs two distinct strategies for WCET

analysis; one is the Implicit Path Enumeration Tech-

nique (IPET) [?] and another models the real-time ap-

plication using timed automata in the verification tool

Uppaal [?]. The rationale behind supporting two dif-

ferent strategies is that the two represent a trade off

between estimation time and precision. In WCA, the

IPET strategy yields WCET estimates relatively fast,

while the model-based strategy results in more precise

estimates at the cost of a relatively long verification

process. The precise WCET estimate is a consequence

of the model representing the detailed behaviour of the

system, especially the cache model, more precisely.

Common to both WCET estimation strategies is

the control-flow graph (CFG) of the application which

is constructed by consulting the Java class files using

the Byte Code Engineering Library [?]. For the IPET

strategy, WCA transforms the CFG into an integer lin-

ear programming problem which is solved using the

linear programming solver lp solve [?] resulting in a

WCET estimate. In the model-based strategy, the CFG

is directly transformed into timed automata models for

Uppaal. Currently, WCET estimates using the model-

based strategy are computed by making an initial guess

of WCET (which can be based on the estimate derived

using IPET). Afterwards, Uppaal verifies whether the

timed automata are verifiable within the guessed time

and, afterwards, it is gradually refined using a binary

search tactic.

For unbounded loops, WCA introduces comment-

based annotations of source code which make explicit

the iteration count of the particular loop. Alternatively,

WCA provides the option of using data-flow analysis

for extracting these. Obviously not all bounds can be

extracted as part of this static code analysis and in

such cases the programmer needs to insert annotations.

Furthermore, WCA performs receiver-type analysis to

increase the precision of the WCETs in case of dynamic

method dispatch.

Besides printing the resulting WCET estimate to

standard output, WCA conveniently generates a de-

tailed HTML report containing a visual representation

of the CFG and timings of individual methods including

their cache misses.

3.5 Schedulability Analysis

In order to ensure the correct functioning of an embed-

ded real-time system, it is essential that all the tasks
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in the system meet all their fundamental temporal re-

quirements, e.g., period and deadline. In other words,

the system must be schedulable. The schedulability of a

system can be verified using techniques such as utilisa-

tion test, response time analysis, and model checking.

Below we describe the TIMES tool for schedulabil-

ity analysis.

TIMES

TIMES [?] is a model-based schedulability analysis tool.

That is, all provided information is transformed into

timed automata on which the model checker Uppaal

[?] is used. Schedulability is verified by checking if a

location where a task misses its deadline is reachable in

the model. The advantage of using TIMES, is that it

allows a wide range of details of the system to be taken

into account in the schedulability analysis. Among oth-

ers, TIMES allow the programmer to specify if shared

resources are used, and when they are locked and un-

locked.

Tasks can be of one of three types, namely: spo-

radic, periodic, or controlled, where the releases of the

sporadic and periodic are handled by TIMES, accord-

ing to their release parameters. The release of the con-

trolled tasks are controlled by release patterns modelled

as timed automata. This is another detail that poten-

tially increases the accuracy of the schedulability analy-

sis, since it provides the means of describing the release

of a task more precisely. To illustrate how release pat-

terns can be modelled consider Figure 3. As shown, the

A
t i m e < = 6 0

C
B

t a s k

t i m e = = 6 0t i m e = 0

Fig. 3 TIMES release pattern, illustrating how the release of
a periodic task can be modelled.

pattern models a periodic release of task with a period

of 60 time units.

TIMES models tasks in a real-time system by spec-

ifying the following three constraints:

Timing Constraints consist of a task’s relative dead-

line and its WCET. Furthermore, it is possible to

specify the type of the task to be one of the three

supported. If the task is periodic or sporadic, its pe-

riod or minimal inter-arrival time must be specified,

respectively.

Precedence Constraints are used if the releases of tasks

are dependent on each other, TIMES allows a prece-

dence graph to be specified.

Resource Constraints take into account shared resources:

These can be specified in terms of when they are

locked and unlocked. The syntax for the constraint

is Si(Pi, Vi) where Si denotes the name of the re-

source, Pi denotes the accumulated execution time

needed for the task to reach the critical section, and

Vi denotes the accumulated execution time needed

to exit the critical section.

When all the tasks of a system have been modelled,

schedulability can be analysed. Basically, the result of

this analysis is a verdict indicating whether deadlines

are missed or not. However, if wanted more detailed in-

formation is available such as the Worst Case Response

Times (WCRTs) for each of the tasks. Furthermore,

TIMES allows the programmer to graphically follow

the scheduling as a Gannt chart, as depicted in Fig-

ure 4. This representation is especially convenient for

debugging since it shows precisely what goes wrong and

where.

SARTS

SARTS [?] combines model-based WCET analysis and

model-based schedulability analysis. Given a real-time

system written in Java, SARTS translates each task in

the system into a timed automaton, based on the Java

bytecode.

Each timed automaton represents the control-flow

of a task at the bytecode level, with timings for each

instruction in the bytecode retrieved using information

about the platform on which the code is executed, e.g.

JOP. The model takes into account instructions that

vary in time, for example, the overhead associated with

a method call, based on the size of the method, is added

to the model. For methods this overhead is known at

compile-time, but other variations are modelled as a

non-deterministic choice in the model. For example, vir-

tual method calls result in a non-deterministic choice

among methods.

Task specific information, such as period, offset, and

deadline, is also retrieved and used as parameters to a

model of the scheduling strategy, i.e. fixed priority pre-

emptive scheduling with priority assignments according

to deadlines. For the schedulability analysis, the task

models, along with a model of the scheduler, are com-

posed in parallel. Using Uppaal the schedulability is

verified by checking for deadlock freedom.
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Fig. 4 Example of a simulation run in TIMES.

This approach is interesting because it considers in-

teractions between tasks at a more fine grained level

than traditional analyses using plain WCET and worst

case blocking. This is because the model includes enough

information to possibly rule out interference between

tasks, due to synchronized methods, where traditional

approaches pessimistically include the worst case ex-

ecution time of the critical section of any other task

performing this synchronization. Another advantage of

this approach is the tight correspondence between code

and abstract model: it is certain that the system is ac-
tually an implementation of the abstract model being

checked, and it does not rely on the developer to have

knowledge of timed automata.

4 Case Study

The case study of a hard real-time system implemented

in Java is based on the classical text-book example of

a mine pump [?]. The purpose of the mine pump is

to monitor a number of environmental properties in a

mine to safely remove excess water using a water pump.

To focus on the essential functionality, a reduced

version has been implemented. The reduced version cen-

tralises the various types of real-time tasks while omit-

ting functionality that would only add to the size of

the system. It consists of two environmental properties

being monitored: the water level in the mine and the

methane level. When the water level rises to a predeter-

mined level, the water pump is started, and when the

water level drops to another predetermined level, the

water pump is stopped. The water pump must not run

if the methane levels exceed safe levels. These function-

alities have temporal requirements stating the reaction

times of the system required for safe operation such

as timely stopping the water pump whenever a critical

level of methane is reached.

The actual prototype consists of two parts: the phys-

ical plant and the control software. Lego is used to con-

struct the physical plant together with Lego NXT sen-

sors and actuators connected to a JOP board. The con-

trol software comprises two periodic and two sporadic

real-time tasks written in Java. The periodic tasks are

responsible for monitoring the methane and water lev-

els. The sporadic tasks are released whenever either the

low or the high level has been reached.

4.1 Comparison of Real-Time Java Profiles

An objective of this case study is to compare the SCJ

and PJ real-time Java profiles. Objective evaluation cri-

teria for ranking the profiles is a difficult undertaking

and, hence, the following will solely present the differ-

ent approaches for expressing fundamental concepts.

Specifically, the following will show how the periodic

task for monitoring the methane level is created.

Listing 1 shows the periodic event handler adhering

to the SCJ profile.
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PeriodicMethaneDetection
methaneDetection =

new PeriodicMethaneDetection (
new PriorityParameters (

METHANE_DETECTION_PRIORITY ) ,
new PeriodicParameters (

new RelativeTime (0 , 0) ,
new RelativeTime (

PERIODIC_GAS_PERIOD , 0) ) ,
new StorageParameters (

SCOPED_MEMORY_BACKING_STORE_SIZE ,
NATIVE_STACK_SIZE ,
JAVA_STACK_SIZE ) ,

methaneSensor ,
waterpumpActuator ) ;

methaneDetection . register ( ) ;

Listing 1 An SCJ handler for methane level.

An SCJ periodic event handler has a number of pa-

rameters: since the SCJ profile level 1 uses an FPS

scheduler, evidently a priority must be specified. Fur-

thermore, a release parameter specifies the start time,

the relative initial time for the first release of the han-

dler, and a further relative time gives the period. An in-

stance of StorageParameters expresses memory-related

constraints for the handler. The objects methaneSensor

and waterpumpActuator are interfaces to a sensor and

an actuator. The sensor observes the current methane

level and the actuator starts and stops the water pump.

When a handler instance has been created, it is set for

being scheduled when the register() method is in-

voked.

addToMission ( new PeriodicMethaneDetection (
new PriorityParameters ( GAS_PRIORITY ) ,
new PeriodicParameters ( new RelativeTime (0 , 0 ) ,

new RelativeTime ( GAS_PERIOD , 0) ) ,
Scheduler . getDefaultScheduler ( ) ,
new LTMemory ( MEMORY_SIZE ) ,
methaneSensor ,
waterPumpActuator ) ) ;

Listing 2 The methane handler in the PJ profile.

The instantiation of a periodic handler in the PJ pro-

file is similar to that of SCJ, and is shown in List-

ing 2. The only noticeable difference is the absence of

StorageParameters, where PJ only requires a mem-

ory area with a given size. Further, the handler must

be given the used scheduler as argument.

public void handleEvent ( ) {
waterpumpActuator . emergencyStop (

methaneSensor . isCriticalMethaneLevelReached ( )
) ;

}

Listing 3 Detecting the methane level.

Listing 3 shows the event handling method of the pe-

riodic event handler PeriodicMethaneDetection, im-

plemented in the PJ profile. It is similar in the SCJ

profile.

4.2 Evaluating Schedulability of Control Software

To ensure that the control software adheres to its tem-

poral requirements, schedulability analysis with TIMES

has been conducted. Evidently, this analysis relies on

the provision of WCET estimates for which WCA has

been used.

WCA allows for a wide variety of configuration op-

tions including the Java processor used and architec-

tural properties. It is of course of utmost importance

that these configuration options are correctly set to re-

flect the actual system used. TIMES, on the other hand,

is platform-agnostic and only relies on the scheduling

algorithm used, temporal properties of the real-time

tasks, and their release-patterns. To make the schedula-

bility analysis more precise, the release patterns of the

real-time threads have been modelled. Of particular in-

terest is that the sporadic threads have been modelled

to reflect that their release in this system cannot occur

concurrently.

Since a shared resource is present in the control soft-

ware, namely the water pump, TIMES requires WCET

estimates before, after, and during the acquisition of the

resource. WCA allows for easily conducting this process

due to the provision of command-line options that lets

the user specify the method of interest. Subsequently,

the HTML reports generated by WCA can be consulted

for extracting the needed information for addressing the

presence of a shared resource.

By using WCA and TIMES together, the control

software has successfully been verified to satisfy the

temporal requirements.

5 Related Work

Our tools should be seen in a larger context of other

tools that can support the development of real-time

Java programs. The following focuses on tools from a

recent larger European project and commercially avail-

able tools.

The HIDOORS [?] project proposed an integrated

development environment for Java embedded real-time

systems. Its ground principle is that the environment

must cover the full life-cycle of real-time systems devel-

opment, meaning that it provides functionality ranging

from a timing predictable JVM to a WCET tool. With

respect to the JVM, the environment uses JamaicaVM

from aicas, one of the partners discussed below, which

is updated to provide time predictable behaviour. That

is, JamaicaVM is extended with a real-time garbage col-

lector and supports the RTSJ specification. For WCET

analysis, HIDOORS suggests that the underlying hard-

ware must be modelled, such that caching and pipelin-
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ing can be accounted for in the analysis. As part of this,

the PAG [?] tool is used for data flow analyses.

The company aicas [?] has commerical tools for real-

time Java systems development. Their JamaicaVM is

supported by: The Jamaica Builder which is capable of

building a single executable containing the Java appli-

cation and determines the memory necessary to execute

it, the VeriFlux tool which conducts static analysis in

order to detect various errors and possible deadlocks

in the application, and finally the Thread Monitor tool

which allows simulation of the behaviour of the appli-

cation in order to fine-tune applications.

Atego [?] provides a wide variety of tools and devel-

opment environments for supporting safety-critical sys-

tems development targeting engineering sectors such as

aerospace, defense, and the automotive industry. Among

others, Atego offers different flavours of Aonix Perc

which is a package containing virtual machine tech-

nology and accompanying tool chain for a variety of

targets. One of these flavours is the Aonix Perc Raven

package that focuses on a small and fast SCJ-compatible

JVM that is amenable to cerification under stringent

standards such as DO-178B Level A. Other flavours in-

clude Aonix Perc Ultra which is a Java Standard Edi-

tion (JSE) compatible JVM with toolchain.

Besides focusing on virtual machine technology, the

offered products of Atego also comprise Artisan Stu-

dio which is Atego’s modelling tool suite. The entire

suite contains support for OMG: UPDM, SysML, and

UML in a single toolset. The aim of Artisan Studio is

to support development by offering different features

such as visualisation to provide overviews of complex

areas of embedded real-time software. When a model
has been established, Artisan Studio provides function-

ality for automatically generating documentation and

for testing the model for correctness and completeness

with respect to defined requirements. Finally, an inter-

esting feature is automated synchronisation of the de-

sign with the application code such that traceability is

maintained.

6 Discussion and Further Work

The key hypothesis underlying our work is that Java is

a promising candidate for a structured language which

is well suited to develop hard real-time safety critical

embedded software.

Java is by itself far too general to assist program-

mers in developing such applications, therefore special-

ized profiles have been developed as outlined above. Es-

sentially the profiles define constructs that control uti-

lization of platform resources like execution time and

memory space. Furthermore they support development

of programs that implement total functions without un-

caught exceptions.

Development of truly predictable software cannot

rely solely on trusting programmer specified resource

constraints and believing that the implemented pro-

grams take care of all exceptional cases. The develop-

ment process must include verification and validation.

It is here that we have explored the potential for har-

nessing theories from a wide range of subject fields, such

as static analysis and model checking, in tools that sup-

port validation.

Some of the tools are stand-alone tools, whereas

other tools integrate more than one analysis, and yet

other tools are already available as plug-ins for the

Eclipse integrated development environment. Integra-

tion is extremely important, because to be really useful

to ordinary programmers it is important that the tools

are integrated well in the workbench that the program-

mer needs for developing, testing and managing code.

The case study reported here gives some evidence

that the individual tools are by now so mature that

they are useful. Yet, most tools for WCET analysis rely

on programmer annotations for loop bounds.

This is clearly not safe, and tools for checking cor-

respondence between code and annotations are needed.

Some tools like WCA offer (a bit of) automation, but

in general the only known safe approach is by theo-

rem proving e.g. using the Java Modeling Language and

semiautomatic theorem provers like the KeY system [?].

This may also provide a bridge between tools for ensur-

ing correct timing behaviour of embedded systems and

the more general properties of ensuring functional cor-
rectness of the code.

In further work, we intend to focus more specifically

on the SCJ-profile and ensure that the tools cooperate

with an Eclipse development environment. The motto

is specialization of the general theories to achieve thor-

ough and yet efficient analyses of real applications.

A further significant challenge is to document the

verdicts of the tools so they can feed into a certifica-

tion of application systems. Extensive verification and

validation of the tools themselves is probably out of

the question, because they are too complex and under

constant development.

A possible solution may be to develop simpler val-

idators which take the verdicts and supporting infor-

mation, for instance traces or reduced CFGs and checks

validity of the verdicts. For many of the complex tools

a validator will be significantly simpler, recalling that

although NP indicates complex searches for solutions

using involved heuristics, it also means that solutions

can be checked in polynomial time.
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