Symbolic PathFinder v7

Kasper S. Luckow
Department of Computer Science
Aalborg University, Denmark
luckow@cs.aau.dk

ABSTRACT

We describe Symbolic PathFinder v7 in terms of its updated de-
sign addressing the changes of Java PathFinder v7 and of its new
optimization when computing path conditions. Furthermore, we
describe the Symbolic Execution Tree Extension; a newly added
feature that allows for outputting the symbolic execution tree
that characterizes the execution paths covered during symbolic
execution. The new extension can be tailored to the needs of sub-
sequent analyses/processing facilities, and we demonstrate this
by presenting SPF-VISUALIZER, which is a tool for customizable
visualization of the symbolic execution tree.

Categories and Subject Descriptors

D.2.4 [Software/Program Verification|: Model checking; D.2.5
[Testing and Debugging]: Symbolic Execution; D.2.5 [Testing
and Debugging]: Debugging Aids

General Terms
Verification, Design, Experimentation

Keywords
Java PathFinder, Symbolic PathFinder, Debugging, Software En-
gineering

1. INTRODUCTION

Symbolic execution [5] is a well known program analysis technique
that executes a program on symbolic inputs instead of concrete
data and computes the effects of the program as symbolic expres-
sions in terms of these inputs. These symbolic inputs account for
all the possible concrete inputs. The analysis explores the execu-
tion tree of a program, and for each explored path, it maintains a
path condition, i.e. a conjunction of constraints on the inputs that
must be satisfied to follow that path. Solving these constraints
gives information about path feasibility and produces solutions
that can be used as test inputs guaranteed to achieve high cover-
age through the code. The analysis has many applications, most
notably automated test input generation and systematic error de-
tection. Symbolic PathFinder (SPF) is a tool for performing sym-
bolic execution of Java Bytecode. SPF handles inputs and opera-
tions on booleans, integers, reals, and complex data structures, as
well as multi-threading, via integration with the Java PathFinder
(JPF) model checker. The tool is open-source!, with a large user
base from NASA, academia, and industry (most notably Fujitsu).

This paper concentrates on the newly released v7 of SPF that
introduces fundamental changes and new features. Most notably
it has been redesigned to address JPF-core v7 including a migra-
tion to Java 7, and has furthermore been optimized for mitigating

1Project website for SPF: http://babelfish.arc.nasa.gov/hg/
jpf/jpf-symbc

Corina S. Pasareanu
Carnegie Mellon Silicon Valley, NASA Ames
~ Moffett Field, CA, USA
corina.s.pasareanu@nasa.gov

state space exploration. Accompanying SPF v7 is the Symbolic
Execution Tree Extension that allows for easy post-processing of
the symbolic execution tree structure. We incorporate in SPF v7
an application of the Symbolic Execution Tree Extension called
SPF-VISUALIZER, which produces a visualization of the symbolic
execution trees for the symbolically executed methods.

2. SPF V7

SPF is part of the Java PathFinder verification toolset [4]. This
toolset includes JPF-core, which is an explicit-state model checker,
and several extension projects, one of them being SPF. The model
checker consists of an extensible Java Virtual Machine (JVM),
state storage, and backtracking capabilities, different search strate-
gies, and listeners for monitoring the search through a program’s
state-space. JPF-core executes the program concretely based on
the standard semantics of Java. In contrast, SPF replaces the
concrete execution semantics of JPF-core with a non-standard
interpretation to enable symbolic execution. SPF relies on the
JPF-core framework to systematically explore the symbolic exe-
cution paths, as well as different thread interleavings. To limit
the possibly infinite search space that results from symbolically
executing programs with loops or recursion, a user-specified depth
is provided. To solve the path conditions, SPF uses several off-
the-shelf solvers such as CHOCO [3], CORAL 8], and CVC3 [1].

The symbolic execution of branching conditions involves creating
a non-deterministic choice in JPF’s search and adding the condi-
tion, or its negation, to the path conditions. This is achieved by
means of a PCChoiceGenerator that branches the execution inside
JPF. A path condition is associated with each choice generated
by the PCChoiceGenerator.

SPF v7 consists of 43 KLOC distributed on 270 source code files
excluding test cases and examples. The size of SPF v6 in terms
of KLOC is approximately the same, but distributed among 239
source code files. This difference is attributed that several parts of
SPF have been refactored in v7. The most significant updates to
the code are related to addressing the new Instruction interface
which resulted in different ways of accessing the system state and
associated path condition choices via the ThreadInfo argument
of the execute methods. Other notable code updates are related
to the changed interfaces of the VMListener and Instruction-
Factory. Finally, the implementation of the lazy initialization
algorithm for handling input data structures was updated signif-
icantly to reflect the new memory model in JFP-core. For SPF
v7, we have also carefully revised the handling of multi-threading
in the context of symbolic execution for GETFIELD and GET-
STATIC. During our development, we discovered and reported
several errors related to handling of multi-threading in JPF-core;
these issues have been fixed. Work in progress includes updating
the symbolic string analysis and careful testing of the code.

2.1 Path Condition Choice Optimization

We describe here an optimization that we made with respect to
computing path conditions. We first explored this optimization in
the context of using partial evaluation for compositional symbolic
execution [7].

In the previous version of SPF, an instance of PCChoiceGenerator
is created whenever a branching condition is executed, and the
decision predicate is symbolic. For the branching instructions e.g.
IFEQ and IFGT, the PCChoiceGenerator introduces two choices
corresponding to the two branches and adds to the path condition
the decision predicate and its negation, respectively. For long and
floating point data type comparison instructions e.g. LCMP and
FCMPL, three choices are introduced corresponding to the three
different outcomes of the comparison. An excerpt of the original
algorithm is shown in Listing 1 for the IFGT Java Bytecode.

[
[

('ti.isFirstStepInsn()) {
cg = new PCChoiceGenerator (2);

sysState.setNextChoiceGenerator (cg);

return this;

else {

cg = sysState.getChoiceGenerator () ;

conditionValue = (Integer)cg.getNextChoice () == 0
? false true;

—~

[o I e I R N R

9}

10 ...

11 if (conditionValue) {

12 pc._addDet (Comparator.GT, sym_v, 0);
13 if (!pc.solve())

14 sysState.setIgnored(true);
15 else

16 cg.setCurrentPC(pc);

17 return getTarget ();

18} else {

19 pc._addDet (Comparator .LE, sym_v, 0);
20 if (!pc.solve())

21 sysState.setIgnored(true);
22 else

23 cg.setCurrentPC(pc);

24 return getNext(ti);

25 }

Listing 1: Original algorithm for introducing path condition
choices.

The condition in line 1 will evaluate to true upon the first exe-
cution of the instruction, thus adding a path condition choice to
the current system state. This marks the end of the transition.
Subsequently, it returns itself which will enable JPF to execute
the instruction again; this time the condition in line 1 evaluates
to false because a new transition has been created, and thus a
choice on the condition value is made in line 8.

When SPF explores either of the paths, it uses a constraint solver
(line 13 and 20) to determine whether the updated path condition
is satisfiable or not, which instructs SPF to continue exploration of
the path or backtrack to a previous choice, respectively. Note that
a path condition choice is introduced regardless of path satisfiabil-
ity of the updated path conditions of both branches. In practice,
it happens frequently that some execution paths are infeasible
caused by e.g. semantic dependencies that always hold prohibit-
ing some branches in subsequent if-statements to be taken. When
the path condition of only one branch is satisfiable, introducing
a path condition choice is clearly superfluous and moreover adds
to the state space JPF needs to explore. Consequently, analysis
times are affected due to the larger state space and re-execution
of branching instructions.

In SPF v7, we address this by incorporating an optimization that
determines the feasibility of the branches in an a priori fash-

ion instead of posteriori. When the path conditions of multiple
branches are satisfiable (two for e.g. IFGT, and at least two for
e.g. LCMP), a choice is introduced, otherwise, if only one is sat-
isfiable, JPF is instructed to explore that particular path. Note
also in this case that the path condition needs not be updated
with the decision predicate associated with the choice, because it
is subsumed, thus leading to a reduced set of constraints in the
path condition compared to the original approach. In the event
that none are satisfiable, JPF backtracks. A fragment of the al-
gorithm is shown in Listing 2 for the IFGT Java Bytecode.

1if (!ti.isFirstStepInsn()) {

2

3 boolean gtSat = gtPC.solve();

4 boolean leSat = 1lePC.solve();

5 if(gtSat) {

6 if (lesat) {

7 cg = new PCChoiceGenerator (2);

8 sysState.setNextChoiceGenerator (cg);
9 return this;

10 } else {

11 return getTarget () ;

12
13} else {

14 if (!1eSat)
15 sysState.setIgnored(true);
16 return getNext (ti);

17
18} else {
19

20 boolean conditionValue = (Integer)cg.
getNextChoice ()==1 ? true false;

21 if(conditionValue) {

22 pc._addDet (Comparator .GT, sym_v, 0);

23 cg.setCurrentPC(pc);

24 return getTarget ();

25 } else {

26 pc._addDet (Comparator .LE, sym_v, 0);

27 cg.setCurrentPC(pc);

28 return getNext (ti);

20}

30 }

Listing 2: Optimized approach for introducing path condition
choices.

Again, the condition in line 1 will evaluate to true upon the first
execution of the instruction. This time, however, the path condi-
tions of the branches are solved a priori; line 3 and 4 determine
their satisfiability and a path condition will be created in line 7 if
both are satisfiable. Otherwise, execution continues.

2.2 Results

We demonstrate the effect of the optimization using the Bank
Account example (see Listing 3 for an excerpt); a series of deposits
and withdrawals are made to a bank account, and the action to
perform is based on a symbolic variable deposit. The example
features infeasible paths (line 5 and 9), deliberately inserted to
demonstrate the effect of the optimization.

1 for(int i = 0; i < seqs; i++) {

2 boolean deposit = performDeposit ();
3 if(deposit) {

4 b.deposit (10);

5 if (!deposit)

6 b.withdraw (1);
7} else {

8 b.withdraw(1);

9 if (deposit)

10 b.deposit (10);
11}

12 }

Listing 3: Excerpt of the Bank Account example.

The Bank Account example has been evaluated on a machine
featuring an Intel Core i7 @ 2.70 GHz and 8 GB of memory.

The results in terms of analysis time and number of states ex-
plored when gradually increasing the sequence length are shown
in Table 1. The significant reduction in the state space size is

Seq., [#] Analysis time, [s] A States, [#] A
No Opt. Opt. No Opt. Opt.
15 17 13 24% 196,603 65,535 | 67%
16 30 22 27% 393,211 131,071 | 67%
17 61 41 33% 786,427 262,143 | 67%
18 126 84 33% || 1,572,859 524,287 | 67%

Table 1: Performance comparison between SPF v6 and SPF v7
on the Bank Account example.

attributed the fact that 67% of the choices are infeasible thus
yielding that 67% fewer states are introduced using the new opti-
mization. Clearly, this example is dominated by infeasible paths,
but it demonstrates that analysis times are reduced using the op-
timization. We also evaluated the effect of the optimization on the
Red Black Tree example included as part of the SPF distribution.
Here the number of states were reduced from 16, 549 to 4,067, a
75% decrease in states. However, the analysis time reduction is
relatively negligible going from 90.3s to 88.0s on average, a re-
sult that can be attributed that the analysis is dominated by the
constraint solver.

3. SYMBOLIC EXECUTION TREE EXTENSION

SPF v7 is extended with the capability of producing a symbolic ex-
ecution tree data structure. A symbolic execution tree character-
izes the feasible execution paths of the program during symbolic
execution. Nodes represent program states, and edges represent
the transition from a state to another. Providing the actual sym-
bolic execution tree after symbolic execution gives an intermedi-
ate structure that can be used for various post-processing facilities
and/or structure-based analyses and transformations. This sec-
tion describes the new extension, and elaborates on how it can be
leveraged in other analyses. In Section 4, we describe a concrete
application of the facilities the extension provides.

A high-level class-diagram of the extension is shown in Figure 1.
The entry point of the extension is the ASymbolicExecution-
TreeListener; an implementation of PropertyListener from JPF-
core. The listener uses the SymbolicExecutionTreeGenerator
for constructing the tree, and the actual construction process is
chained to the events occurring during symbolic execution. The
simplest case is the event occurring whenever an instruction, part
of the symbolic target method or in its call chain, is executed. In
that case, the NodeFactory will be requested to construct a new
node which is connected to the node of the previously executed
instruction. However, other events need to be taken account; an
example is state backtracking signalling that a new sub-tree is
generated at the choice to which JPF is backtracking.

The use of the NodeFactory (realizing the factory design pattern)
allows for customizing the granularity level of the data included
in the tree; for applications processing the complete symbolic
traces, nodes corresponding to all executed instructions along the
paths could be included, whereas other applications processing
only recorded path conditions updates, could include only the
nodes for branching instructions. The size of the resulting sym-
bolic execution tree is thus largely dependent on the granularity
level since it grows exponentially in the number of branches. A
default node factory is provided, which produces nodes for each
symbolic state.

3.1 Using the Extension

Application of the new extension requires two parts; a subclass
of ASymbolicExecutionTreeListener implementing the two ab-
stract methods; getNodeFactory and processSET. The former
must provide an instance of NodeFactory, which will be used
during the construction process to incorporate the information of
interest in the nodes of the tree. The latter method will automat-
ically be called upon completion of constructing the tree. In case
multiple (symbolic) target methods are supplied in the SPF con-
figuration, a respective tree is generated for each of them. Thus
processSET provides the entry point for extensions that wish to
conduct post-processing of the symbolic execution tree(s).

Processing the symbolic execution tree can be done in a variety
of ways, but the extension makes available a simple framework
for traversal-based analysis using the visitor pattern; user-defined
extensions wishing to use this, need to implement SymbolicExe-
cutionTreeVisitor and make definitions for the visit methods
for each tree element.

4. APPLICATIONS OF THE SYMBOLIC EXE-
CUTION TREE EXTENSION

The new extension is an appropriate format for analyses reasoning
on all the execution paths produced as part of symbolic execution
or when an intermediate representation is more appropriate for
leveraging analysis.

In this section, we present SPF-VISUALIZER; a new addition to
the SPF toolset, which visualizes the symbolic execution tree thus
being useful for e.g. debugging or teaching purposes. It supports a
wide variety of the most common output formats, including DOT,
PS, PNG, PDF, and more. SPF-VISUALIZER is generically built,
and as such, allows for easy tailoring of the visual output both in
terms of what should be represented and how. Here we demon-
strate a basic application of SPF-VISUALIZER and give pointers
for how to adopt it for more domain-specific purposes. Specif-
ically, we want to output the symbolic execution tree in terms
of the complete symbolic execution paths graphically; the nodes
in the graphic representation include basic information about the
symbolic state, such as the Program Counter (i.e. the instruc-
tion to be executed when firing and outgoing transition), and
references to the original source code including line number and
class to which the Program Counter belongs. Note that this is
a fine-grained visualization, that may not scale to large systems,
but serves to demonstrate the possibilities of SPF-VISUALIZER-
other applications may e.g. only be interested in visualizing path
condition updates, thus being far more scalable.

Besides, we distinguish between the type of node and provide
type-specific information:

Conditional goto instructions This includes Java Bytecodes
such as IFEQ and IFGE. These are represented as a dia-
mond shape inspired by the shape of decisions in flowchart
diagrams.

Invoke instructions This includes INVOKEVIRTUAL and IN-
VOKESTATIC. For making explicit that subsequent nodes
will be part of the method body of the callee, these nodes are
highlighted and furthermore the node includes information
about the callee e.g. its name.

Return instructions This includes e.g. IRETURN and ARE-
TURN. Similar to the invoke instructions, these are high-
lighted to make clear that flow of control returns to the
callsite.

<<Interface>>

PropertyListenerAdapter

ASymbolicExecutionTreelListener

choiceGeneratorRegistered
executelnstruction

getNodeFactory : NodeFactory
processSET(List<SET>)

|

NodeFactory

SymbolicExecutionTreeGenerator

constructNode : Node

i

generate(InstrContext)

getSET : SET

DefNodeFactory

SymbolicExecutionTree (SET)

<<Interface>>

SymbolicExecutionTreeVisitor

visit(SET)
visit(Transition)
visit(Node)

<<Interface>>

ISymbolicExecutionTreeElement

accept(SETVisitor)

A
=l

Node

Transition

Figure 1: High-level class diagram of the Symbolic Execution Tree Extension.

Path condition updates This applies for the class of nodes
for which the previous node is a conditional goto instruc-
tion where the conditional expression is symbolic. For such
nodes, the entire conjunctive expression of the path condi-
tion is included in the node, and thus expresses the con-
straint that must be satisfied to follow that (part of the)
execution path.

Final instructions This applies to the last instruction in each of
the feasible execution paths symbolic execution has covered.
In addition to information included due to the instruction
being part of the above, these nodes also contains the final
path condition.

Applying such type-specific renderings is easy, because SPF-
VISUALIZER encloses their processing in distinct methods e.g.
getNodeAttrs(IfNode node) for the nodes representing condi-
tionals in the tree. Each method returns a set of attributes, e.g.
shape, color, and text, that must apply for the particular node.
It is thus relatively easy to make domain-specific visualizations.
E.g. if one is concerned with the state of the operand stack during
symbolic execution, such information can easily be incorporated
as well because the Node object already contains such information.
If the needs are beyond the knowledge that can be inferred from
the symbolic state, one can supply an appropriate implementa-
tion of NodeFactory to SPF-VISUALIZER (recall, it is a subclass
of ASymbolicExecutionTreeListener), which includes this infor-
mation when constructing nodes.

We demonstrate the use of the basic SPF-VISUALIZER using the
small program shown in Listing 4.

13 public int compAB(int a, int b) {
14 if(a > b) {

The target method is compAB where both parameters are symbolic.
Note that the conjunction of the branching conditions of line 14
and 15 is not satisfiable. Consequently, the execution path to
line 16 is infeasible. The resulting visualization of the symbolic
execution tree is shown in Figure 2.

iload_1
(Example.java:

if_icmple
(Example java: 14)

iload_1
(Example.java:15)
Path condition:
a_I_SYMINT > b_2_SYMINT

aload_0
(Example.java:20)
Path condition:
a_l_SYMINT <= b_2_SYMINT

invokevirtual
Calling:
gov.nasa.jpf.symbe.symexectree. visualizer. Example.number()1

if_icmpne
(Example.java:15)

bipush
(Example.

bipush
(Example java:18)
Path condition:
a_l_SYMINT > b_2_SYMINT

ireturn
Returning to:
gov.nasa,jpf.symbe.symexectree. visualizer. Example.compAB(IDI

ireturn ireturn

(Example java:18)
Path condition:
a_l_SYMINT > b_2_SYMINT

(Example.java:20)
Path condition:
a_l_SYMINT <= b_2_SYMINT

15 if(a == b)

16 return number () + 42;
17 } else

18 return 42;

19 } else

20 return number () ;

21 }

22 public int number () {
23 return 24;

24 }
Listing 4:
VISUALIZER.

Java program for demonstrating the SPF-

Figure 2: Visualization of the symbolic execution tree of the code
in Listing 4.

From the visualization, it is clear that the execution path to line
16 is infeasible since the node of the branching instruction in line
15 only has a single outgoing edge leading to the node of line 18.

S. CONCLUSION

This paper has outlined SPF v7 in terms of its changes to address
JPF-core v7. SPF v7 includes a new optimization for reducing the
number of path condition choices, and the evaluation has demon-
strated that it affects both state space size and analysis times.

We have also presented the Symbolic Execution Tree Extension;
an extension to the SPF toolset that allows for producing a sym-
bolic execution tree characterizing the execution paths covered as
part of symbolic execution. SPF-VISUALIZER is an application of
Symbolic Execution Tree Extension which outputs the symbolic
execution tree graphically. It is generically designed for address-
ing various domain-specific visualizations by allowing adjustments
in both what shall be represented as well as how. The new exten-
sion is also forming the core component in our current work [9] of
translating the symbolic execution tree to the Timed Automata
formalism of UPPAAL [2] with integration in TetaSARTS [6] for
real-time analyses. A final direction is to adopt the extension for
memoization purposes similar to [10].

In the context of what has been shown in this paper, future work
comprises how to further optimize the code, e.g. in terms of the
lazy initialization algorithm used in SPF for handling input data
structures. Similar to the optimization presented for handling
branch conditions, we would like to explore ways of delaying and
reducing the non-determinism used for handling aliasing in the
input data structures. Furthermore, we would like to improve
the visual output of the tool. More sophisticated features such as
dynamically allowing “collapsing” method bodies may provide a
better overview of the tree.

6. REFERENCES

[1] C. Barrett and C. Tinelli. CVC3. In Proceedings of the 19"
International Conference on Computer Aided Verification
(CAV 07), 2007.

[2] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and
W. Yi. UPPAAL — Tool Suite for Automatic Verification of
Real-Time Systems. In Proceedings of the
DIMACS/SYCON workshop on Hybrid systems I11:
verification and control, 1996.

[3] Choco. Choco, 2013.
http://www.emn.fr/z-info/choco-solver/.

[4] JPF. Java PathFinder, 2013.
http://babelfish.arc.nasa.gov/trac/jpf.

[5] J. C. King. Symbolic Execution and Program Testing.
Commun. ACM, 1976.

[6] K. S. Luckow, T. Bggolm, B. Thomsen, and K. G. Larsen.
TetaSARTS: A Tool for Modular Timing Analysis of Safety
Critical Java Systems. In Proceedings of the 11th
International Workshop on Java Technologies for
Real-Time and Embedded Systems, 2013.

[7] J. M. Rojas and C. S. Pasareanu. Compositional Symbolic
Execution through Program Specialization. In
BYTECODE’13, 2013.

[8] M. Souza, M. Borges, M. d’Amorim, and C. S. Pasireanu.
CORAL: Solving Complex Constraints for Symbolic
PathFinder. In Proceedings of the 8rd int’l conference on
NASA Formal methods, 2011.

[9] SPF-RT. Symbolic PathFinder Real-Time (jpf-symbc-rt),
2013.
http://babelfish.arc.nasa.gov/hg/jpf/jpf-symbc-rt.

[10] G. Yang, S. Khurshid, and C. S. Pasareanu. Memoise: a
Tool for Memoized Symbolic Execution. In Proceedings of
the International Conference on Software Engineering, 2013.

