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ABSTRACT
We present a novel tool for statically determining the Worst
Case Execution Time (WCET) of Java Bytecode-based pro-
grams called Tool for Execution Time Analysis of Java byte-
code (TetaJ). This tool differentiates itself from existing
tools by separating the individual constituents of the execu-
tion environment into independent components. The prime
benefit is that it can be used for execution environments
featuring common embedded processors and software im-
plementations of the JVM. TetaJ employs a model checking
approach for statically determining WCET where the Java
program, the JVM, and the hardware are modelled as Net-
works of Timed Automata (NTA) and given as input to the
state-of-the-art UPPAAL model checking tool.

TetaJ is evaluated through a case study based on the classic
text-book example of a hard real-time control system in a
mine pump. The system is hosted on an execution environ-
ment featuring an interpretation-based JVM, called Hard-
ware near Virtual Machine (HVM), that runs on an Atmel
AVR ATmega2560 processor.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Object-oriented lan-
guages; D.3.4 [Processors]: Run-time environments; C.3
[Special-Purpose and Application-Based]: Real-time
and embedded systems; I.6.3 [Simulation and Modelling]:
Applications

General Terms
Verification, Languages, Experimentation

Keywords
Real-time Java, Real-time embedded systems, WCET anal-
ysis, Model checking, Software implemented JVM

1. INTRODUCTION
Java in its traditional form, has inherent issues that makes
it less suitable for development of hard real-time embedded
systems such as the lack of the notion of a deadline and
high-resolution real-time clocks. To accommodate these, a
variety of initiatives such as the Real-Time Specification
for Java (RTSJ) [23] and related profiles: Safety Critical
Java (SCJ) [16] and Predictable Java (PJ) [9] have been
initiated. These specify certain alterations to the under-
lying Java Virtual Machine (JVM) and various extensions
through libraries that, when adhered to, creates a program-
ming model that can be used for real-time systems devel-
opment in Java. The SCJ and PJ Java profiles further-
more strive to provide a programming model which is more
amenable to program analysis in general and to Worst Case
Execution Time (WCET) analysis in particular. This is of
utmost importance for hard real-time systems since WCET
analysis forms an integral component in schedulability anal-
ysis which in turn can be used for determining temporal
correctness.

Conducting WCET analysis is not trivial and in respect to
Java, the analysis is further complicated by the presence of
the JVM, since this introduces an additional layer between
the application and the hardware. One approach to over-
come this problem has been to implement the JVM directly
in hardware, removing this additional layer [25, 2]. The ad-
vantage of this approach is that it allows WCET techniques
otherwise used for execution environments without a JVM
to be used for Java [11, 26].

Including a software implemented JVM in the WCET anal-
ysis is still desirable, since it will enable a broader range
of common processors to be used. In this regard, the idea
of portable WCET analysis based on the concept of Vir-
tual Machine Timing Models (VMTMs) [14, 15] have been
proposed which allow for expressing the cost of individual
Java Bytecode instructions for a particular execution en-
vironment. [14, 15] put forward two strategies for deriv-
ing Virtual Machine Timing Models, one based on profil-
ing and one based on benchmarks, but both approaches are
measurement-based as detailed analysis of the Java program,
JVM implementation, and hardware platform is judged too
complex. Fortunately, recent development in model-based
analysis has shown how both program behaviour and pro-
cessor behaviour can be expressed using models and used in
conjunction with WCET analysis [26, 13, 11, 22], indicating
the possibility of expressing the entire execution environ-



ment using these.

In this paper, we present a novel tool called Tool for Exe-
cution Time Analysis of Java Bytecode (TetaJ)1, which is
designed to conduct WCET analysis of Java tasks running
on a software implementation of a JVM executed on common
embedded processors. For this, a model-based approach is
taken, allowing TetaJ to be adapted to a variety of different
execution environments. The model-based approach is ben-
eficial to use since it is possible to precisely describing the
behaviour of programs and hardware. Furthermore, model
checking has undergone a variety of optimisation in recent
years, thereby making it more amenable than before for solv-
ing larger problems [7].

Capturing the behaviour of real-time tasks is cumber-
some, and therefore TetaJ is capable of automatically do-
ing this provided the source files and corresponding Java
class files in an approach similar to both SARTS [11] and
WCA [26]. Modelling the behaviour of the JVM can be
done (semi)automatically using similar techniques as for
Java tasks to generate a model from the source and exe-
cutable code for the JVM. The hardware is modelled man-
ually and could in the future be expected to be provided by
the hardware vendors.

TetaJ has been evaluated using a case study based on the
classic text-book example of a real-time system of a mine
pump [12, 20]. The execution environment hosting the mine
pump application is based on a software implemented JVM,
called Hardware near Virtual Machine (HVM) [18], and the
Atmel AVR ATmega2560 [5] processor is used as a repre-
sentative example of a common embedded processor. The
results of the evaluation is twofold: first we demonstrate that
the hard real-time Java mine pump application can run on
a software implemented JVM on common embedded hard-
ware. Secondly, and most importantly, we show that TetaJ
is applicable for determining WCET of the tasks of the mine
pump application.

In the following, we introduce the general design of TetaJ
in Section 3. Furthermore, we demonstrate how the model-
based approach is realised using Networks of Timed Au-
tomata (NTA) which can be analysed by the state-of-the-art
model checking tool, UPPAAL [7]. Here, we also present
some of the optimisations that have been applied for mit-
igating model checking time. In Section 4, we present the
case study. Section 5 presents that evaluation with results
showing that TetaJ is indeed an applicable tool for WCET
analysis of Java Bytecode-based programs.

2. RELATED WORK
The concepts of TetaJ draw inspiration from a variety of
other projects that have focused on WCET analysis for Java
and other programming languages.

AbsInt have developed a WCET analysis tool called aiT [1]
which uses abstract interpretation for low-level WCET anal-
ysis and Implicit Path Enumeration Technique (IPET) for
high-level WCET analysis. The tool is build with emphasis
on flexibility to accommodate different processors and has

1TetaJ can be downloaded at http://tetaj.dk

currently support for ARM7, LEON2, LEON3, and various
PowerPC processors. aiT assumes an executable as input
which is subsequently disassembled. Using the disassembled
executable, the control flow is reconstructed and subject to
different analyses such as value analysis, cache analysis, and
pipeline analysis. The result of these analyses is to obtain
WCET estimates with little pessimism.

METAMOC [13] is a model-based WCET analysis tool which
emphasises flexibility and currently offers support for AVR-
based and ARM-based processors. This is achieved by mod-
elling both the hardware and the program using a Network
of Timed Automata (NTA) amenable to model-checking us-
ing the UPPAAL model checker. Specifically, the pipeline,
cache, and main memory are represented using timed au-
tomata, whose interconnections effectively simulate an ab-
stract execution of the instructions. To simulate execution of
the program, the control flow, represented as a Control Flow
Graph (CFG), is reconstructed by disassembling the exe-
cutable of the program. Subsequently, the CFG is modelled
as an NTA which synchronises with the hardware model
to simulate execution. Another tool using a modelling ap-
proach is SARTS [11, 10] which is targeted at schedulability
analysis of applications written in a variant of the SCJ Java
real-time profile and requiring the Java Optimized Processor
(JOP) [25].

The WCET Analyzer (WCA) [26] is specifically designed
for safe WCET estimates of Java programs running on the
JOP. Due to the JOP being purposely designed for being
amenable to program analysis, very precise WCET esti-
mates have been obtained using WCA. This is for example
attributed the fact that the JOP features a deterministic
cache model whose behaviour can precisely be described.
Similar to SARTS and METAMOC, WCA takes as input
an executable, which, in this case, comprises the Java class
files, from which the CFG is reconstructed. The WCET can
be estimated from the CFG using either a model-based ap-
proach using UPPAAL or using Implicit Path Enumeration
Technique (IPET). The incentive for supporting both ap-
proaches was initially to compare them but it is also argued
to be applicable for different purposes when analysing the
program. Since the model-based approach yields preciser
results at the expense of analysis time, it should be used for
smaller, more important parts of the program. The opposite
applies for IPET.

eXtensible high-integrity Real-Time Java (XRTJ) [15], is,
to our best knowledge, the only project that has attempted
to provide WCET analysis of Java programs accommodat-
ing software implementations of the JVM. For determining
WCET, XRTJ employs a static analysis approach which re-
lies on timing models called VMTMs. These models de-
scribe the timings of the individual Java Bytecode instruc-
tions in the particular execution environment thereby taking
into account the behaviour of hardware, operating system,
and JVM. It is suggested that the timing models are derived
using a measurement-based approach [14].

3. TETAJ
TetaJ is capable of automatically conducting the WCET
analysis of Java Bytecode programs given a JVM model and
a hardware model. This entails a number of transformations



which are divided into three individual tools: the model gen-
erator tool, the model combiner tool, and the model processor
tool. The flow of using these tools is shown in Figure 1.

Javac/Jikes/GCJ

Java

Java Bytecode

Program Model

Model Combiner Tool

Hardware Model

WCET

UPPAALModel Processor Tool

JVM Model

CFGCFGUPPAAL Models

Model Generator Tool

Figure 1: Overview of the individual components in
TetaJ and the general usage of the tool.

Initially, the model generator tool is used to construct a
model of the analysed task, denoted the program model.
This in itself requires a number of steps, namely: construct-
ing a CFG of the analysed task, annotating and optimising
the CFG, and translating it into a model. The resulting
model is combined with a JVM model and a hardware model
by the model combiner tool. Finally, the model processor
tool is used to estimate the WCET of the modelled task and
present the result to the user.

3.1 Model Layers
The analysed task and the target execution environment are
modelled using timed automata. These are modelled such
that the analysed task, JVM, and hardware are independent
and interchangeable. Together they form a layered architec-
ture with predefined interfaces where the program model
interacts with the underlying JVM model which further in-
teracts with the hardware model. These are described in the
following.

3.1.1 Program Model
The program model represents the analysed task in terms
of its control flow. This is done using locations representing
the individual Java Bytecode instructions constituting the
program with interconnections corresponding to the control
flow. Figure 2 illustrates a model with no branches and four
sequentially executed Java Bytecode instructions.

A synchronisation on the channel jvm execute is placed at

each transition and is used to signal the JVM model to
simulate the execution of the instruction assigned to the
jvm instruction variable. Note that the channel is marked
as urgent, meaning that it is fired as soon as possible.

Return

BasicBlockEnd_ID0

Execute_IRETURN

Execute_ILOAD_1

Execute_ISTORE_1

Execute_ICONST_0

BasicBlockBegin_ID0

Execute

Idle

return_methodB!

jvm_execute!
jvm_instruction = JVM_IRETURN

jvm_execute!
jvm_instruction = JVM_ILOAD_1

jvm_execute!
jvm_instruction = JVM_ISTORE_1

jvm_execute!
jvm_instruction = JVM_ICONST_0

invoke_methodB?

Figure 2: Example of a simple method modelled us-
ing timed automata.

Each modelled method is associated with channels used for
simulating invocation and return of the particular method.
In the example, these channels are called invoke methodB
and return methodB, respectively. Synchronising the in-
voke methodB channel allows the model to enter the Execute
location from where it continues until reaching the Return
location. Here, the return methodB channel is fired in order
to indicate the completion of the method before entering the
Idle location, waiting for potentially being invoked again.

An initialisation model is used to initiate simulation of the
method for which a WCET estimate is desired. The model
essentially conducts the initial synchronisation with the model
representing the method of interest, and further synchro-
nises with this model’s return channel. Finally, a synchroni-
sation is made on the channel used by the hardware model
to indicate that it has successfully simulated execution of
all the instructions in the pipeline. The model is shown in
Figure 3.

TerminateMain_DoneExecuteInitial

main_done!return_main?invoke_main!
initialise()

Figure 3: The initialisation model used to start the
execution of the modelled method representing the
analysed task.



3.1.2 JVM Model
The JVM model represents the target JVM, and is thus de-
pendent on the specific JVM implementation. The interfaces
to the program model and the hardware model are prede-
fined such that they can be constructed independent of the
particular JVM implementation. A simple JVM model is
illustrated in Figure 4. Here, the JVM supports two Java
Bytecode instructions: the iload instruction and the is-

tore instruction. Initially, this model waits in the Idle lo-
cation until the jvm execute channel is fired by the program
model which requests simulation of the next Java Bytecode
instruction of the program. The transition corresponding
to the particular instruction will then be taken. This de-
cision is made by analysing the instruction stored in the
jvm instruction variable.

Analyse_JBC

Execute_ISTORE

Execute_ILOAD

Idle

return_ISTORE_implementation?

return_ILOAD_implementation?

jvm_instruction == ISTORE
invoke_ISTORE_implementation!

jvm_instruction == ILOAD

invoke_ILOAD_implementation!

jvm_execute?

Figure 4: JVM model supporting the execution of
two Java Bytecode instructions.

When a transition for a particular Java Bytecode instruction
is taken, a synchronisation is used to signal another model
which contains the actual implementation of it. This is done
similarly to how invocations are simulated in the program
model using two channels.

The current version of TetaJ allows automating the process
of constructing JVM models by the introduction of a com-
mon CFG representation, denoted Tetaj CFG (TCFG). This
allows to reuse CFG analyses and model generation for both
Java programs and JVMs. This technique has been applied
to a timing predictable version of the JVM called HVM and
modelling the HVM is therefore a matter of transforming
the executable of the JVM into a TCFG.

An example of a model for a Java Bytecode instruction im-
plementation is shown in Figure 5. Each assembly instruc-
tion is modelled by conducting a synchronisation on the as-
sembly execute channel and storing the current assembly in-
struction in the assembly instruction variable. This channel
is used by the hardware model to simulate the execution of
the given instruction.

3.1.3 Hardware Model
The hardware model represents the behaviour of execut-
ing the individual machine instructions defined by the JVM
model. This model can vary greatly in complexity depend-
ing on the actual target hardware.

We reuse the hardware models provided by METAMOC in
TetaJ. This is beneficial since METAMOC is continuously

Return

BasicBlockEnd_ID0

ASSEMBLY_ret_ID0_2

ASSEMBLY_push_ID0_1

ASSEMBLY_push_ID0_0

BasicBlockBegin_ID0

Executing

Idle

return_assembly_handleISTORE!

assembly_execute!
assembly_instruction = ASSEMBLY_RET

assembly_execute!
assembly_instruction = ASSEMBLY_PUSH

assembly_execute!
assembly_instruction = ASSEMBLY_PUSH

invoke_assembly_handleISTORE?

Figure 5: Example of a model representing the is-

tore instruction implementation.

extended with new hardware models, thereby implicitly ex-
tending the applicability of TetaJ. An example of a two-stage
pipeline from METAMOC is shown in Figure 6.

x <= 1

execute!
move(THIS, NEXT)

x == 1

fetch_done!

main_done?

fetch?
x = 0

x <= wait

fetch_done?

x == wait
clear(THIS)

execute?
set_wait(),
x = 0

Figure 6: Model of the fetch and execute stages of
a two-stage pipeline.[13]

The modelled fetch stage waits for the channel fetch to be
fired. When this happens, it uses a clock, x, to simulate the
fetch process taking one clock cycle. In order to initiate the
next stage in the pipeline, the move(THIS, NEXT) function
is invoked which moves the current from the fetch stage to
the execute stage. At the same time, it also fires the execu-
tion channel, signalling the execute stage to proceed.[13]

The modelled execution stage uses a clock similar to the
fetch stage in order to simulate the time used to execute
the current instruction. A similar clock, x, is used to force
waiting in the location corresponding to the WCET of the
instruction. This is achieved by the invariant x <= wait
and the guard x == wait where wait is set to the WCET
of the instruction.[13]

3.2 Model Optimisations
Before conducting the WCET analysis, the models must be
processed to avoid potential state space explosion. There-
fore, a set of model optimisations are conducted with the



purpose of decreasing the analysis time and memory con-
sumption.[27]

3.2.1 State Space Reduction mode
This optimisation is part of the UPPAAL model checker,
and instructs UPPAAL to apply a number of techniques to
reduce the memory consumption. Unfortunately, this opti-
misation is not necessarily exact, and potentially frees mem-
ory which is still necessary, resulting in increased estimation
time if states must be re-explored.[27]

3.2.2 Progress Measures
Another approach which allows UPPAAL to reduce mem-
ory consumption is the use of progress measures. A progress
measure describes progress in the model and, hence, must
be monotonically increased as the model progresses. Incre-
menting the progress measure indicates to UPPAAL that
it safely can remove knowledge regarding previous states.
An example of a UPPAAL model using progress measures
is shown in Figure 7. Here, a progress measure, denoted
pm, is incremented as the model progresses. Whenever all
execution traces have crossed a barrier, all memory related
to previous states can be removed.

pm=pm+1

pm=pm+1

pm=pm+1

pm=pm+1

pm=pm+1

pm=pm+1

Figure 7: UPPAAL model using progress measures.

3.2.3 Model Reduction
Modelling an entire JVM produces a large number of models
if the individual Java Bytecode implementations are encap-
sulated in individual models. The problem with this ap-
proach is that a large number of models increases the state
space since each state comprise the current location of all
models regardless if they are used or not. This is especially
relevant since a program seldom uses all Java Bytecode in-
structions, and parts of the JVM related to these are thus
unnecessary. The program model is therefore statically anal-
ysed to detect which Java Bytecode instructions are actually
used. The models representing the implementations of the
Java Bytecode instructions that are not used are afterwards
removed from the JVM model.

3.2.4 Condition Optimisation
The verification time of model checking depends on the size
of the models’ state space. Especially branches are of con-
cern since these exponentially increase it. Therefore, the
final optimisation, partially inspired by [13], aims at safely
removing branches from the CFG to simplify the model-
checking process. Generally, it is difficult to safely remove
branches since it typically cannot be guaranteed which branch
edge results in the highest WCET. However, in special cases
this can be done. Consider if-statements, which have two
branches: one entering the body of the if-statement, and
one skipping the body. In this case, it is evident that fol-
lowing the branch into the if-statement body always yields
a higher WCET than skipping the body assuming no tim-
ing anomalies. Thus, the edge leading around the body can

safely be removed. An example of an if-statement for which
a branch can be removed is shown in Figure 8.

Safely removable edge Body

Condition

Figure 8: Example of a condition optimisation re-
moving an edge from an if-statement.

4. CASE STUDY
To evaluate the applicability of TetaJ, we have done a case
study with a commonly available processor and a JVM tar-
geted at embedded systems.

4.1 The Mine Pump Control System
The embedded hard real-time application used in the case
study is a mine pump, which is a classic text-book example
[20]. The prime purpose of the mine pump is mine drainage
by controlling a water pump. This further requires a num-
ber of environmental properties to be monitored such that
the mine pump can be safely operated to avoid potentially
endangering the lives of the mine workers. The original de-
scription of the mine pump is quite elaborate and therefore
we have chosen to reduce it following the ideas initially pro-
posed in [8].

The reduced version emphasises the safety control logic re-
sponsible for controlling when the water pump is allowed to
start and when further operation of the water pump is pro-
hibited. In Figure 9, the mine pump used in this case study
is illustrated.

The control system must employ sensors that can be used for
determining when the water level has reached a high level,
in which case the water pump must be started, and for de-
termining when the low level has been reached, in which
case the water pump must stop. Besides monitoring the
current water level, the mine pump includes additional sen-
sory equipment for determining the methane concentration.
Should this exceed a critical level, the operation of the water
pump should be immediately terminated to avoid an explo-
sion. Furthermore, if this condition arises, the water pump
is prohibited from starting regardless of water level.

The mine pump control system can be implemented using
two periodic tasks: one is responsible for periodically mon-
itoring the current water level and one is responsible for
periodically monitoring the current methane concentration.
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Figure 9: The mine pump featuring sensors for de-
termining water level and methane concentration.

Each of these tasks have temporal requirements which are
listed in Table 1.

Task Period/Deadline

Methane 56ms
Water 40ms

Table 1: Timing requirements for the mine pump.

In addition to the control software, a physical model of the
mine pump has been built using LEGO which is depicted in
Figure 10.

Figure 10: The LEGO construction simulating the
behaviour of the mine pump.

In this model, water and methane are represented using two
differently coloured bricks. The bricks will enter the con-
veyor belt, labelled 3, from the feeder, labelled 1. Before
entering the mine shaft, labelled 4, a light sensor, labelled
2, is responsible for detecting whether the brick is methane
or not. In case it is, the control system will increase the
methane concentration accordingly. If this concentration
exceeds a predefined limit, the water pump, labelled 7, will
stop if it is currently running and be prohibited from start-

ing until the methane concentration is lowered. Due to the
feeder continuously adding water to the mine shaft, eventu-
ally, the water level will become too high. This is detected
using a light sensor, labelled 5. The control system will in
this case initiate the water pump, which stepwise removes
bricks from the shaft and transfers them to the angled con-
veyor belt, labelled 8, that will move the bricks back to
the feeder. To avoid completely removing all the bricks, a
light sensor, labelled 6, is used for determining when the
water level becomes low. When this event happens, the
water pump is immediately stopped. All sensors and the
water pump are connected with the I/O ports to the Atmel
STK600 evaluation board, labelled 9. The evaluation board
is equipped with an Atmel AVR ATmega2560 processor.

4.2 Hardware near Virtual Machine
The HVM [18], which supports systems with 256 kB flash
memory and 8 kB of RAM, is a representative example of
a JVM designed for operating on resource-constrained sys-
tems. It does not rely on operating system support and can
be run on a variety of different processors including Atmel’s
AVR (specifically the ATmega2560), National Semiconduc-
tor’s CR16C, and x86. The compilation technique employed
is interpretation. Whenever a Java program is to be hosted
by the HVM, it is compiled and effectively incorporated into
the executable of the HVM itself. This is done using icecap-
tools which is part of the HVM distribution.

A distinctive feature of the HVM is the notion of hardware
objects [19] and first-level interrupt handling which essen-
tially are extensions that allow manipulation of hardware
registers and assigning Java handlers to hardware level in-
terrupts.

As of the current state, all Java Bytecode instructions are
supported except those dealing with float and double types.
It is also worth noting that the original implementation of
the HVM has not been targeted real-time systems and is
therefore not analysable. The following section describes
how we have modified the implementation towards being
timing predictable.

4.2.1 Time Predictable HVM
The implementation has a number of undesirable constructs
such as unbounded loops and recursion. In addition, many
of the Java Bytecode implementations have properties that
cannot be statically determined. This section presents some
of the modifications that have been applied to the imple-
mentation of the HVM.

The implementation of the instanceof Java Bytecode origi-
nally includes an unbounded loop testing whether the object
reference is an instance of a given class by consulting its par-
ent classes iteratively. Evidently, a tight loop bound cannot
be set statically that applies locally for every class when
conducting this process. To circumvent the problem, the
provided icecap-tools have been modified for analysing the
class hierarchies prior to making the final JVM executable.
Specifically, a matrix is constructed from which it can be
determined whether a particular class is parent to another
class. This only requires a look-up to be performed with
time complexity O(1).



The HVM contains a simple interpretation loop which ini-
tially fetches and analyses the next Java Bytecode before
executing it through a large switch-statement with cases cor-
responding to the supported Java Bytecode instructions. A
problem arises when encountering Java Bytecodes used for
invoking methods, such as invokevirtual because the inter-
pretation loop will be called recursively thereby giving rise
to similar problems as unbounded loops, and, most impor-
tantly, recursion is difficult to model using timed automata.
To avoid these problems, the interpretation loop has been
restructured such that stack frames are pushed to a stack
whenever invoking a method. Additionally, the context is
saved, such that when the method returns, the registers can
be restored.

In the original implementation of the HVM, locating the in-
dividual Java Bytecode implementations in the executable is
difficult due to being enclosed in individual case-statements.
To simplify this task, all implementations have been ex-
tracted from the case-statements and placed in correspond-
ing functions with appropriate names denoting the respec-
tive Java Bytecode instruction. Evidently, this adds over-
heads and we envision that employing an annotation strat-
egy to identify the Java Bytecode implementations in the
original structure is a better solution and may be subject to
future work.

4.3 Atmel AVR ATmega2560
The processor used in this case study is Atmel’s AVR AT-
mega2560 [5] which represents a processor with resources
similar to those that can be found in many embedded sys-
tems [4]. Specifically, the processor is an 8-bit microcon-
troller featuring 256 kB flash for program memory, 8 kB
SRAM for data memory and 4 kB EEPROM for non-volatile
data storage. The clock frequency is variable and has been
set to 10 MHz.

4.4 Implementation
We now present excerpts of the mine pump implementa-
tion to illustrate that TetaJ applies for non-trivial examples.
Listing 1 shows the main() method used for initialising var-
ious registers on the ATmega2560, and the periodic tasks.

Initially, the objects representing the sensors and actuators
of the system are instantiated. Note that all object allo-
cations are done in the main() method to avoid time un-
predictable behaviour during the time critical phase which
is entered as the last part of this method. To allow the
two tasks to be executed periodically, a Cyclic Executive
Schedule (CES) is constructed. Since the greatest common
divisor of the periods of the tasks is 8, this will be the length
of the minor cycle. Using TetaJ on the tasks it is clear that
the methane task must be split in three such that it can
be executed in three successive minor cycles. The schedule
is provided to a CES scheduler. This is implemented as a
interrupt handler for the hardware interrupts generated by
a timer at each minor cycle.

The call to LegoAVRInterface.initialiseLego() executes a na-
tive method for setting up a number of timers available on
the ATmega2560 processor which are used for polling the
sensors and control motor speed periodically. Finally, inter-
rupts are enabled, and the scheduler is started.

An essential part of the mine pump is to ensure safe opera-
tion of the water pump. This is achieved by disallowing it to
run when the methane concentration is critical. A history
of measurements is used to keep track of the concentration
of methane as shown in Listing 2.

public int getMethaneConcentration ( ) {
int methaneCount = 0 ;

// @loopbound = 10
for ( int i = 0 ; i < this . history . length ; i

++) {
if ( this . history [ i ] == METHANE )

methaneCount++;
}

return methaneCount ;
}

Listing 2: The getMethaneConcentration() method
used to determine the amount of observed methane.

As shown, the getMethaneConcentration() method contains
a loop counting the number of methane measurements in
the history array. Notice that since TetaJ does not employ
automated loop bound analysis, the loop is bounded to 10
iterations by the annotation. This bound corresponds to the
length of the history array.

5. EVALUATION
The following evaluates the impact of the presented opti-
misation techniques, presents that TetaJ upholds the safety
criterion, and evaluates the case study using TetaJ.

Conducting WCET analyses using UPPAAL on the models
provided by TetaJ, the query sup : cyclecounter is used. Es-
sentially, this returns the suprema of the cyclecounter which
is a global clock.

5.1 Optimisations
To evaluate the impact of the optimisation techniques, six
different experiments have been conducted: one without op-
timisations, four with one individual optimisation enabled,
and, finally, one with all optimisations enabled. Each of the
experiments are conducted using a simple Java program con-
taining a loop and were run on an application server with
dual Intel Xeon E5420 quad core @ 2.50 GHz and 32 GB
RAM. The results are listed in Table 2.

Analysis time States explored Memory usage

None 14h 51m 17s 41854143 3,905 MB
PM 108h 7m 8s 408223029 589 MB
STR 13h 33m 21s 41854143 2,426 MB
CO 1m 16s 53732 294 MB
MR 4h 46m 41s 41854143 3,851 MB
All 19s 57553 144 MB

Table 2: Results using the optimisations: progress
measures (PM), state space reduction (STR), condi-
tion optimisation (CO), and model reduction (MR).



public void main ( String [ ] args ) {
WaterpumpActuator waterpumpActuator = new WaterpumpActuator ( ACTUATOR_ID_WATERPUMP ) ;
MethaneSensor methaneSensor = new MethaneSensor ( SENSOR_ID_METHANE , CRITICAL_METHANE_LEVEL ,

BRICK_HISTORY_SIZE ) ;
HighWaterSensor highwaterSensor = new HighWaterSensor ( SENSOR_ID_HIGH_WATER ,

CONSECUTIVE_HIGH_WATER_READINGS ) ;
LowWaterSensor lowwaterSensor = new LowWaterSensor ( SENSOR_ID_LOW_WATER ,

CONSECUTIVE_NO_WATER_READINGS ) ;

PeriodicMethaneDetectionShared shared = new PeriodicMethaneDetectionShared ( ) ;
PeriodicMethaneDetectionStep1 m1 = new PeriodicMethaneDetectionStep1 ( methaneSensor ,

waterpumpActuator ) ;
PeriodicMethaneDetectionStep2 m2 = new PeriodicMethaneDetectionStep2 ( methaneSensor , shared ) ;
PeriodicMethaneDetectionStep3 m3 = new PeriodicMethaneDetectionStep3 ( waterpumpActuator , shared

) ;
PeriodicWaterLevelDetection w = new PeriodicWaterLevelDetection ( highwaterSensor ,

lowwaterSensor , waterpumpActuator ) ;

int [ ] schedule = {W , M1 , M2 , M3 , E , W , E , M1 , M2 , M3 , W , E , E , E , M1 , M2 , M3 , W , E , E , W , M1 , M2 , M3 , E , W , E , E , M1 , M2 , M3
, W , E , E , E } ;

SchedulableObject [ ] tasks = {null , m1 , m2 , m3 , w } ;

CyclicExecutive ces = new CyclicExecutive ( schedule , tasks , 34) ;

InterruptHandler . registerHandler ( ces , ATMega2560InterruptHandler . TIMER2_OVF ) ;
TimerAau . initTimer2 ( ) ;
ATMega2560InterruptHandler . init ( ) ;

LegoAVRInterface . initialiseLego ( ) ;
LegoAVRInterface . enableInterrupts ( ) ;

ces . startSchedule ( ) ;
}

Listing 1: The implementation of the mine pump’s main() method.

All the experiments yield a WCET of 17262 clock cycles,
however they differ significantly in analysis time and mem-
ory consumption. Surprisingly, using the progress measure
optimisation yields significantly higher analysis times than
the reference. This indicates that for high progress measure
values, performance is significantly degraded. With respect
to the other optimisations, it can be observed that the re-
sults from all and none are significantly different. Specifi-
cally, the analysis time range from 15 hours to 19 seconds,
and the memory usage from 3.9 GB to 144 MB. Further-
more, it can be observed that the condition optimisation
influences the analysis time significantly by safely removing
branches. Finally, the analysis time of model reduction is
remarkable. It indicates that the overhead of instantiating
unnecessary models in the model is considerable and should
be avoided.

5.2 Safety and Precision of WCET Estimates
Evaluating the safety and precision of the WCET estimates
produced by TetaJ requires a great effort if done manually.
This would require the entire executable to be examined and
manually sum the execution times of the individual instruc-
tions. This approach is deemed too cumbersome, hence to
give indications of whether TetaJ produces safe and pre-
cise WCET estimates or not, these are compared with the
WCETs obtained by a measurement-based approach. For
this, we use the AVR Simulator part of the AVR Studio [6]
IDE which is capable of simulating execution of programs
on the ATmega2560.

The comparison of measurement-based WCETs and WCETs
estimated by TetaJ is based on four algorithms implemented
in Java. The results of the experiments are shown in Table 3.

Algorithm Meas.
WCET

TetaJ
WCET

Pessimism

Iterative Fibonacci 46,642 46,933 0.6%
Factorial 39,726 40,939 3.1%
Reverse Ordering 64,436 81,919 27.1%
Bubble Sort 907,103 2,270,401 150.3%
Binary Search 54,430 99,301 82.4%
Insertion Sort 849,353 3,740,769 440.4%

Table 3: Comparison of measurement-based
WCETs and WCETs obtained by TetaJ in clock cy-
cles.

The measurement-based approach is expected to produce
under-estimated WCETs, hence these should always be lower
than the results obtained using TetaJ. Referring to Table 3,
this is indeed the case for all the experiments which indicates
that TetaJ produces safe WCETs. As observed, in some
cases, the WCET estimates obtained using TetaJ are very
precise. However, for some other cases, particularly Bubble
Sort and Insertion Sort, the estimates are overly pessimistic.
This is primarily attributed the approach to annotating the
loop bounds. For these two algorithms, the iteration count
of the inner loop depends on the particular iteration of the
outer loop. Such interdependencies are as of this writing not
possible to describe and hence the loop bound of the inner



loop is set to the iteration count that applies for the first
iteration of the outer loop. For example, if the outer loop
is set to ten, the inner loop is set to nine. Furthermore, we
hypothesise, that even better results may be possible if vari-
ous DFAs are applied such as determining and subsequently
removing infeasible paths.

5.3 WCET Analysis of the Case Study
Having shown that TetaJ is applicable for WCET analysis
of Java programs, we use it to analyse the WCETs of the
mine pump application. The results of the WCET analysis
using all available optimisations are shown in Table 4.

Task Analysis time Memory usage WCET

Methane 1 1m 19s 140 MB 41,644
Methane 2 1m 16s 105 MB 68,436
Methane 3 29s 75 MB 12,552
Water 6m 40s 271 MB 70,712

Table 4: Results of using TetaJ on the mine pump
application.

Recognising that the ATmega2560 is configured with a clock
frequency of 10 MHz, all estimated WCETs can be run
within a minor cycle of 8 milliseconds, or 80,000 clock cycles.
Therefore, running the tasks in the provided schedule both
the methane and water tasks will meet their deadlines.

6. CONCLUSIONS
In this paper we have presented TetaJ, a novel tool for stati-
cally determining the Worst Case Execution Time (WCET)
of Java Bytecode-based programs. TetaJ is designed to con-
duct WCET analysis of Java tasks running on a software
implementation of a JVM executed on common embedded
processors.

TetaJ was developed with the purpose of being adoptable in
an embedded hard real-time development process because
WCET analysis can be conducted on method level thereby
allowing for a fine-grained decomposition of the system. The
advantage of this is that the WCET analysis can be used
for more than being an integral part of the schedulability
analysis, since WCET analysis on method level allows for a
variety of other applications, such as profiling.

We have shown that TetaJ can be used iteratively in the pro-
cess since the model checking time is considered sufficiently
low as a consequence of applying a series of optimisations.

To examine the concrete effects of applying the optimisa-
tions, we conducted a series of experiments which showed
remarkable effects in analysis time. For a simple Java pro-
gram, the analysis time was reduced from 15 hours to 19
seconds without loss of precision in the WCET. Therefore,
we conclude that the optimisations improve the feasibility
of model checking for estimating WCET.

To provide indications whether TetaJ upholds the safety
property, WCETs obtained by it were compared with those
from a measurement-based approach. The comparison indi-
cated that TetaJ upholds the safety property and in many
cases will be capable of producing very precise estimates.

The cases where overly pessimistic results are obtained, is
attributed a lack of expressivity in the loop bound anno-
tations which is particularly the cases where the iteration
count of inner loops are dependent on the particular itera-
tion count of the outer loop. Furthermore, we hypothesise
that even greater precision is possible if various DFAs are
employed for e.g. removing infeasible paths that may con-
tribute to higher WCETs.

Having shown that TetaJ is applicable for WCET analy-
sis opens for a variety of new directions which we envision
can be subject to future work. Specifically, the flexibility
of TetaJ may be further exercised by conducting more case
studies in which other well-known JVMs such as JamVM [21],
FijiVM [24], or Ovm [3] are used. On a related note, the ex-
periences drawn from modifying the HVM towards time pre-
dictability has made us wonder whether a new JVM build
with this design goal would be beneficial. In addition, it
could be interesting to examine whether concrete guidelines
for JVM design can be deduced such that the JVM is more
amenable to WCET analysis.

Even though the mine pump is a representative example of
a hard real-time system, it may be interesting in future case
studies to examine the effects of analysing more elaborate
programs with higher complexity such as the Collision De-
tector (CDj) [17] real-time benchmark suite for Java.
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