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Abstract. The idea of analysing real programs by process algebraic
methods probably goes back to the Occam language using the CSP pro-
cess algebra [43]. In [16, 24] Degano et. al. followed in that tradition by
analysing Mobile Agent Programs written in the Higher Order Func-
tional, Concurrent and Distributed, programming language Facile [47],
by equipping Facile with a process algebraic semantics based on true con-
currency. This semantics facilitated analysis of programs revealing subtle
bugs that would otherwise be very hard to find. Inspired by the idea of
translating real programs into process algebraic frameworks, we have in
recent years pursued an agenda of translating hard-real-time embedded
safety critical programs written in the Safety Critical Java Profile [33]
into networks of timed automata [4] and subjecting those to automated
analysis using the UPPAAL model checker [10]. Several tools have been
built and the tools have been used to analyse a number of systems for
properties such as worst case execution time, schedulability and energy
optimization [14, 12, 13, 19, 38, 36, 34]. In this paper we will elaborate on
the theoretical underpinning of the translation from Java programs to
timed automata models and briefly summarize some of the results based
on this translation. Furthermore, we discuss future work, especially re-
lations to the work in [16, 24] as Java recently has adopted first class
higher order functions in the form of lambda abstractions.

1 Introduction

There is a growing interest in adopting Java technology in the real-time systems
domain as witnessed by the large research community working on several aspects
of realizing this goal. Notably, research has focused on devising appropriate
real-time systems models for Java to address inherent issues such as lack of
real-time tasks, high-precision clocks and a memory model not relying on (time
unpredictable) garbage collection. In particular, this has led to the development
of the Real-Time Specification for Java (RTSJ) [15] and the Safety Critical Java
(SCJ) [33] profile.

Java is usually implemented via a translation to Java Byte Code (JBC),
which is then either interpreted by a Java Virtual Machine (JVM) or further
translated to native code. To accommodate the real-time execution demands of
the RTSJ and SCJ programming models the underlying execution environment,



the JVM, must exhibit temporal predictable behavior to allow reasoning about
timeliness. One way of achieving time predictable execution of the JVM is to
implement it in hardware, e.g. the aJile Systems [3] and the Java Optimized Pro-
cessor (JOP) project [39]. There are also a number of software implementations
of the JVM facilitating time predictable execution on time predictable com-
modity hardware platforms. The FijiVM [41], Hardware Near Virtual Machine
(HVM) [30], JamaicaVM [2] and PicoPERC [40] are examples of this.

To address timing analysis of this environment, we have developed a tool,
TetaSARTS3, that allows the real-time system to be developed in a platform
independent way. The tool is targeted at schedulability analysis of SCJ tasks
taking into account a refined system model that accounts for the exact release
patterns of the tasks, their relative releases, interleavings, and resource shar-
ing. In addition, the timing model is rich enough to facilitate analysis of other
properties pertaining to the verification of a real-time system including proces-
sor utilisation and processor idle time, Worst Case Execution Time (WCET),
Worst Case Response Time (WCRT) taking into account pre-emption and task
interactions, and Worst Case Blocking Time (WCBT). TetaSARTS is the re-
sult of merging the ideas from locally developed methods for timing analysis;
TetaJ [26], METAMOC [21], SARTS [14] and the TIMES [7] framework for
schedulability analysis using Uppaal [22]. TetaSARTS resembles an optimiz-
ing compiler translating an SCJ system into a Network of Timed Automata
(NTA) amenable to model checking. The model is constructed such that model
checking simulates an abstract execution of the real-time tasks, taking into ac-
count the exact execution environment and scheduling policy. It is built around
a modular architecture that enables platform models to be replaced seamlessly,
thereby making it possible to conduct analysis of systems running on software
implementations of the JVM as well as hardware implementations of the JVM.

Although Java was not originally equipped with or designed for mathematical
foundations, the theoretical underpinnings of Java have by now been explored by
many researchers. In this paper we will elaborate on the theoretical underpinning
of the translation from Java programs to timed automata models and briefly
summarize some of the results.

The paper is organized as follows; Section 2 gives an overview of related work.
Section 3 gives an overview of the Safety Critical Java programming model.
Section 4 gives an overview of to implementations of the JVM supporting the
SCJ programming model. Section 5 presents the theoretical model of Timed
Automata. Section 6 presents an overview of the TetaSARTS tool. Section 7
presents the translation from JBC to Timed Automata and Section 8 presents
our conjecture that this translation is correct. Section 9 presents various opti-
mizations and Section 10 presents evaluation of the TetaSARTS tool. Section
11 presents the conclusions and future work, especially relations to the work in
[16, 24] as Java recently has adopted first class higher order functions in the form
of lambda abstractions.

3 TetaSARTS can be downloaded at http://people.cs.aau.dk/~luckow/

tetasarts/



2 Related Work

Roscoe et. al. were probably the first to analyse real programs written in the Oc-
cam language by process algebraic methods using the CSP process algebra [43].
Degano et. al. followed in that tradition by analyzing Mobile Agent Programs
written in the Higher Order Functional, Concurrent and Distributed, program-
ming language Facile [47], by equipping Facile with a process algebraic semantics
based on true concurrency [16, 24]. This semantics facilitated analysis of pro-
grams revealing subtle bugs that would otherwise be very hard to find. More
recently Java programs have been analyzed for correct calling order of methods
using the Concurrency Workbench [29].

For analysing timing properties of systems, the traditional methods for schedu-
lability analysis include response time analysis [17]. For each task, the response
time is calculated, and the system is schedulable if the response times for the
tasks are less than their respective deadlines. Tools and techniques based on the
traditional method tend to be rather conservative.

The TIMES [7] tool presents a model-based, control-flow sensitive technique
for schedulability analysis in which a specification for the real-time system is built
as a set of tasks modeling their timing properties e.g. cost, dependencies, and
deadlines. Supplementary code can be provided. This results in an NTA model
which is checked using the Uppaal [10] model checker. TIMES does not perform
timing analysis of the code associated with the tasks, which must be performed
using external WCET analysis tools such as aiT [25], METAMOC [21], WCET
Analyzer (WCA) [44] or TetaJ [26]. The aiT and METAMOC tools are targeted
at timing analysis of C-programs and use respectively a combination of abstract
interpretation and integer linear programming, and model checking. For Java,
either WCA or TetaJ can be used. WCA makes available two techniques for
timing analysis; model checking and Implicit Path Enumeration [32]. WCA,
however, is targeted at the JOP [39], a JVM implementation in hardware. For
dedicated schedulability analysis of Java programs, SARTS [14] can be used
which also employs a model-based technique itself inspired from TIMES.

Bandera [20] is a tool for generating automata descriptions for various model
checkers such as PROMELA for the SPIN [28] model checker given the program
source of the Java system. Java Pathfinder (JPF) [31] can also be used for
software model checking of Java real-time systems. TetaSARTS is inspired by
the idea of approaching software model checking by considering the translation
process from software to finite-state models as an optimising compiler.

3 The SCJ Real-Time Programming Model

Safety critical applications have different complexity levels. To cater for this the
SCJ programming model is based on tasks grouped in missions, where a mis-
sion encapsulates a specific functionality or phase in the lifetime of the real-time
system as a set of schedulable entities. The SCJ specification lets developers
tailor the capabilities of the platform to the needs of the application through



three compliance levels. Level 0, provides a simple, frame-based cyclic executive
model which is single threaded with a single mission. Level 1 extends this model
with multi-threading via periodic and aperiodic event handlers, multiple mis-
sions, and a fixed-priority preemptive scheduler (FPS). Level 2 lifts restrictions
on threads and supports nested missions.

A mission encapsulates a specific functionality or phase in the lifetime of the
real-time system as a set of schedulable entities. For instance, a flight-control
system may be composed of take-off, cruising, and landing each of which can
be assigned a dedicated mission. A schedulable entity handles a specific func-
tionality and has release parameters describing the release pattern and temporal
scope e.g. release time and deadline. The release pattern is either periodic or
aperiodic.

Setup Initialisation Execution Termination Teardown

Re-initialise current mission

Select next mission

Current mission

Fig. 1: Overview of the mission concept [36].

The mission concept is depicted in Figure 1 and contains five phases;

Setup where the mission objects are allocated during start-up of the system.
This phase is not considered time-critical.

Initialisation where all object allocations related to the mission or to the entire
applications are performed. This phase is time-critical in applications with
mode changes consisting of a sequence of missions.

Execution during which all application logic is executed and schedulable enti-
ties are set for execution according to a pre-emptive priority scheduler. This
phase is time-critical.

Cleanup is entered if the mission terminates and is used for completing the
execution of all schedulable entities as well as performing cleanup-related
functionality. After this phase, the same mission may be restarted, a new
is selected, or the Teardown phase is entered. This phase is time-critical in
applications with mode changes consisting of a sequence of missions.

Teardown is the final phase in the lifetime of the application and comprises
deallocation of objects and release of locks etc. This phase is not time-critical.

SCJ introduces a memory model based on the concept of scoped memory
from the RTSJ, which circumvents the use of a garbage collected heap during
real-time execution, easing the verification of timing properties of SCJ systems.



4 Real-Time Execution Platforms

The SCJ programming model provides a structuring framework for applications
with hard real-time requirements. Next such applications need an execution plat-
form. For applications written in C this is usually a hardware processor. How-
ever, Java applications are typically translated into JBC which are then either
interpreted or further translated into native code before execution, also called
ahead-of-time (AOT) execution, or during, also called just-in-time (JIT) execu-
tion. This approach entails a time predictable implementation of each JBC.

The simplest way to ensure a time predictable execution of each Jave Byte-
code is to implement the JVM in hardware. This is the approach taken by the
JOP [39]. The JOP is implemented on an FPGA (Altera Cyclone EP1C6Q240
or EP1C12Q240). The JOP has its own micro code instruction set with most
JBC having a one-to-one mapping. However, some are more complex and are
implemented as a sequence of JOP micro codes, some are even implemented in
Java. The end result is that for each JBC its execution can be bounded and its
WCET be determined. Important for WCET analysis of programs executing on
the JOP is that the JOP does not feature data caches, but features a method
cache which must be taken into account.

The HVM [45, 30] is a lean JVM implementation intended for use in resource-
constrained embedded devices with as low as 256 KB ROM and 20 KB RAM.
It features both iterative interpretation, Java-to-C compilation (AOT), and a
hybrid of the two. The HVM employs JVM specialisation; a JVM is produced
specifically for hosting the JBC program of a given application. This is done us-
ing the Icecap-tools Eclipse-plugin, which analyzes the JBC program and pro-
duces an executable for the target platform. The analyses and transformations
can be extended, and incorporate a number of (static) optimizations for improv-
ing performance of the JVM and for reducing its size. This includes receiver-type
analysis for potentially devirtualising method calls and intelligent class linking
which computes a conservative set of classes and methods that are used in the
application. Only this set will be embedded in the final HVM executable. It also
conservatively estimates the set of JBC that will actually be used. The HVM
is self-contained and does not rely on the presence of an OS or a C standard
library. The HVM has been ported to the Atmel AVR ATmega2560 microcon-
troller, Arduino and Lego EV3 [30].

5 Timed Automata

This section presents an overview of the Timed Automata formalism, based on [5,
11, 9]. A Timed Automaton is a finite state machine extended with a finite set of
non-negative real-valued clock variables. Traditionally, vertices in the graph are
called locations, which are connected by edges. The set of clocks is denoted by
C. Clocks are distinguished from usual program variables in that their operations
are limited to inspection and reset to zero. For traditional Timed Automata,
clocks implicitly increase their values with rate one as time progresses, that is,



if time elapses by d, all clocks synchronously advance by d. Formally, a clock

valuation over the set of clocks, C, is a mapping v : C → R+, where R+ denotes
the set of non-negative reals. RC+ denotes the set of all clock valuations. Then,
for a valuation v ∈ RC+ and a time delay, d ∈ R+, v+d is the clock valuation that
for each c ∈ C assigns v(c) + d. For a set of clocks X ⊆ C, v[Y ] is the valuation
assigning to each x ∈ Y zero (i.e. it is a reset of x) and v(x) when x 6∈ Y . A Timed
Automaton can have conditions on the clock values called guards for edges and
invariants for locations. In general, conditions that depend on clock values are
clock constraints and B(C) is the set of conjunctions over simple constraints
of the form x ∼ c (or x− y ∼ c), where x, y ∈ C, c ∈ N and ∼∈ {<,≤,=≥, >}.
When a clock constraint on an edge is satisfied, that edge is capable of being
fired. Firing of an edge happens instantaneously. In locations, clock constraints
are used to constrain the time spent in that location.

Definition 1 (Timed Automaton). A Timed Automaton is a tuple A =
〈L, l0, Σ,C,E, I〉, where L is a set of locations, l0 ∈ L is the initial location,
C is the set of clocks, Σ is a set of (co-)actions (which are denoted by ! and ?,
respectively) and the internal τ -action, E ⊆ L×B(C)×Σ× 2C ×L is the set of
edges between locations with a guard, an action, and a set of clocks to be reset.
I : L → B(C) is the map assigning to each location an invariant i.e. a clock
constraint.

In the following, l
g,a,r−−−→ l′ denotes 〈l, g, a, r, l′〉 ∈ E, where l, l′ ∈ L, g ∈ B(C),

a ∈ Σ, and r ∈ 2C . Guards and invariants will be considered as sets of clock
valuations, and v |= I(l) denotes that the clock valuation v satisfies I(l), i.e. the
clock constraints representing the invariant of location l.

The semantics of a Timed Automaton A = 〈L, l0, Σ,C,E, I〉 is a timed
labelled transition system 〈S, s0,→〉 where states are pairs (l, v) ∈ S ⊆ L× RC+
with v |= I(l), s0 = (l0, u0) is the initial state, and →⊆ S × (R+ ∪A)× S is the
transition relation which can be either

(i) a delay transition (l, v)
d−→ (l, v′) where d ∈ R+ is a delay and v′ = v + d if

∀d′ s.t. 0 ≤ d′ ≤ d =⇒ v + d′ |= I(l); or

(ii) a discrete transition (l, v)
a−→ (l′, v′) if there exists an edge l

g,a,Y−−−→ l′ such
that v |= g, v′ = v[Y ] and v′ |= I(l′).

Timed Automata A1, ...,An can be composed into a Network of Timed
Automata using the CCS parallel composition operator, i.e, A1| · · · |An. Let
Aj = 〈Lj , lj0, C,A,Ej , Ij〉, with j = 1, 2, ..., n be a Network of n Timed Au-
tomata. The location is now defined as a vector l̄ = (l1, l2, ..., ln). The notation
l̄[l′i/li] denotes the update of location vector l̄ where the ith element li is sub-
stituted by l′i. The invariant functions are composed into a single function over
location vectors i.e. I(l̄) = ∧iIi(li). Again, the semantics of a Network of Timed
Automata can be defined as a timed labelled transition system 〈S, s0,→〉, where
states, S, are now defined by the set S = (L1×L2×...×Ln)×RC+, the initial state
defined by s0 = (l̄0, v0) ∈ S, and the transition relation, →⊆ S × (R+ ∪A)× S,
can now either be



(i) a delay transition (l̄, v)
d−→ (l̄, v′) where d ∈ R+ is a delay and v′ = v + d if

∀d′ s.t. 0 ≤ d′ ≤ d =⇒ v + d′ |= I(l̄);

(ii) a discrete transition (l̄, v)
a−→ (l̄[l′i/li], v

′) if there exists an edge li
g,a,Y−−−→ l′i

such that v |= g, v′ = v[Y ] and v′ |= I(l̄′[l′i/li]); or

(iii) a synchronisation transition (l̄, v)
τ−→ (l̄[l′j/lj , l

′
i/li], v

′) for Timed Automata

Ai and Aj if there exist edges li
gi,c!,Yi−−−−→ l′i and lj

gj ,c?,Yj−−−−−→ l′j such that

v |= gi ∧ gj , v′ = v[Yi ∪ Yj ] and v′ |= I(l̄[l′j/lj , l
′
i/li]).

Note that the above definition follows the standard definition of the CCS parallel
composition operator. This will facilitate the simulation result presented later in
this paper. The definition given in [11] only allows internal transitions in clause
(ii) as the NTA verified by the UPPAAL model checker are closed systems and
thus the parallel composition operator has an implicit hiding operator.

6 TetaSARTS

TetaSARTS is a fully automated tool for conducting timing analysis, such as
schedulability analysis, of JBC real-time systems taking into account the partic-
ular execution environment consisting of either a software implementation of the
JVM on a commodity hardware platform or a hardware implementation of the
JVM. TetaSARTS employs a model-based technique for making a control-flow
sensitive analysis of the JBC real-time system. It keeps a tight correspondence
between the actual real-time system application code and the model used for
analysis, by generating TA models amenable to model checking using Uppaal.
A further benefit of using model checking is that a counterexample is provided
in case the system is non-schedulable.

Two options are available for representing the execution environment: an
explicit representation or an inline representation. The explicit representation
incorporates the control-flow of the JBC implementations used by the specific
JVM hosting the real-time system. To reflect the behavior of the JBC interpreter
of the JVM, this scheme is modelled as well. Simulating the execution of the
JVM is achieved by including TA models of the hardware. By using this option
TetaSARTS is conducting schedulability analysis by simulating an abstract
execution of the entire real-time system. This increases the overall complexity
of the analysed system, but also provides the potential for more precise analysis
since the dynamic behavior of e.g. caching and pipelining is accounted for. For
the inline representation TetaSARTS inlines the execution times of each of
the instructions in the model. These could be provided for various reasons; for
JOP, the execution times are fixed, and can be found in the documentation.
The inlined instruction execution times may also be available from a WCET
analysis tool or from a measurement-based approach by using a stopwatch. The
benefit of using an inline representation is simplicity; the dynamic behavior of
the execution environment is not incorporated in the simulation, but potentially
at the expense of precision, because cache-effects and timing anomalies inherent
on many platforms, significantly influence instruction execution times.



TetaSARTS supports real-time tasks from SCJ with periodic or sporadic
release patterns. However, it assumes that all real-time tasks are created as part
of system initialisation, but future extensions will support the missing concepts
from SCJ. It also supports synchronisation mechanisms such as synchronised
methods in Java. The effect including synchronisation is reported in [14].

In the following sections we look at how an SCJ application is translated
into a set of timed automata and how optimizations akin to those found in
optimizing compilers can help reduce the model to cope with the inherent state
space explosion.

How the set of program automata is combined with timed automata modeling
the scheduler, sporadic and periodic task firing, the JVM and the hardware
platform, forming a Network of Timed Automata (NTA) suitable for analysis
with the UPPAAL model checker, is reported in [38]. Schedulability analysis can
be performed by verifying that a deadlock state is never reachable within the
feasibility interval [27]. This can only be the case if one or more of the real-time
tasks do not finish within their deadlines. Thus schedulability is expressed by
the Timed Computation Tree Logic (TCTL) specification A2 !deadlock.

7 From Java Byte Code to Timed Automata

To translate an SCJ application to an NTA, the SCJ program is first compiled
to JBC with a standard Java compile like javac. The resulting JBC forms the
starting point for the transformation. The original Java source code is only used
in relation to handling loops. TetaSARTS constructs an extended control flow
graph (CFG) in the Timed Intermediate Representation (TIR) format (see below)
for each method used in the system. The TIR is translated to a Timed Automaton
for each method. These are then combined into an NTA called the Program NTA.
The Program NTA captures the behavior of the system by simulating a control-flow
sensitive execution of each real-time task in the system. Generating the Program

NTA is a process composed of stages akin to those found in an optimising compiler.

Javac Java Classes
SCJ system

TA builder
Per method TA

CFG builder
Per method CFG

Fig. 2: From SCJ to TA

TetaSARTS initially identifies the real-time tasks of the system. With the
handlers of these as entry points, TetaSARTS explores the call-graph and lim-
its the construction of TIR to methods part of the reachable execution path. This
reduces the overall translation time remarkably since it avoids CFG reconstruc-
tion for all methods but the relevant ones. The TIR is subsequently decorated
with loop bound information extracted from the original source code using a
comment-based approach where loop bounds are annotated using the format
//@loopbound = 〈loop〉.



The output of different Java compilers including javac, ECJ, Jikes and GCJ,
shows that all produced loop constructs are reducible [1], that is, they contain a
single loop header that is always visited when the loop is executed. Furthermore,
a reducible loop contains at least one back edge which returns control from the
loop body to the loop header. To identify reducible loops, TetaSARTS employs
a loop identification analysis based on the algorithm presented in [1]. When loops
have been identified, extracting the loop bound from the source code is trivial
since the source code line numbers are available from the JBC.

Generating TIR The first step in the process is, for each method used in the
system, to generate the intermediate representation, TIR:

Definition 2 (TIR). TIR is an extended Control-Flow Graph G = 〈B,L,E〉
composed of basic blocks, B, edges, E ⊆ B × L × B, where l ∈ L decorates the
CFG with extra information such as loop bounds, JVM instructions and types.

A basic block is a linear sequence of instructions, i1, i2, . . . , in, that does not
contain jumps nor jump targets, hence having a single entry and a single exit
point. An edge, e = 〈b1, l, b2〉, connecting the two basic blocks, b1 and b2, denotes
that a control flow path exists between the last instruction of b1 and the first
instruction of b2. When basic blocks have been connected, the CFG is expanded
with nodes/edges for each instruction in a basic block. Thus each edge in TIR is
labeled with exactly one instruction.

We also introduce the operation succ(b) = {b′ | b, b′ ∈ B and 〈b, l, b′〉 ∈ E}.
Following the idea presented in [6] we introduce a transition system for a CFG

simply by defining: b
l−→ b′ whenever 〈b, l, b′〉 ∈ E.

Generating the NTA We first introduce two sets of JBC instructions; JBCInst
contains all defined JBC instructions, and

CallInst = {invokevirtual, invokespecial, invokedynamic,
invokeinterface, invokestatic}

that is, all JBC instructions used for invocation that transfer control to another
method. For ease of notation, we also extend the use of succ to apply for use
with instructions i.e.

succb(i) = {inxt |〈b, l, b′〉 ∈ E and i ∈ l and 〈b′, l′, b′′〉 ∈ succ(b) and inxt ∈ l′}

The intuition is that succb(i) is the set of instructions immediately follow-
ing instruction i in the CFG, i.e. the instructions labeling edges with origin in
succ(b). We omit the subscript b from succb(i) when b is obvious from the context.

Definition 3 (Left Merging TAs). For convenience, we define the left merg-
ing operator of two TAs, � : TA× TA→ TA:

�(〈L, l0, Σ,C,E, I〉, 〈L′, l′0, Σ
′, C ′, E′, I ′〉) = 〈L∪L′, l0, Σ∪Σ′, C∪C ′, E∪E′, I∪I ′〉



The left merge operator is easily generalized to take a set of TA as its the
second argument.

Definition 4 (TIR Translation). Let CFG be the control-flow graph of method
m, chan : m→ chanName be the function that provides a unique channel name,
chanName, for the method m, l0(m) be a unique new location for the method
m, lfirst be the location generated by genTAinst for the first instruction of CFG,
and similarly llast the location generated by genTAinst for the last instruction of
CFG. Then

TACFG = TAboil �
i∈b

b∈CFG

genTAinst(i)

where TAboil = 〈{l0, lfirst, llast}, l0, {chan(m)!, chan(m)?}, C,E, ∅〉,
with E = {l0

chan(m)?−−−−−−→ lfirst, llast
chan(m)!−−−−−−→ l0(m)},

and C =

{
{execT ime} if Inline representation is used
∅ if Explicit representation is used

and where execT ime is used for monitoring the inlined instruction execution
times.

Generating the TA stubs for JBC instructions is parameterised on the par-
ticular type of that instruction such that

genTAinst(i) =

{
genTAcall(i) if i ∈ CallInst
genTAsim(i) if i ∈ JBCInst \ CallInst

That is, genTAcall generates the TA stub of JBC instructions that invokes meth-
ods, whereas genTAsim generates the TA of all other JBCs.

genTAcall and genTAsim are further parameterised depending on whether
the execution environment is explicitly modelled or inlined in the Program NTA

with static instruction execution times and without a JVM NTA and a Hardware

NTA.

genTAsim(i) =

{
genTAsimin

if inline representation is used
genTAsimexp

if explicit representation is used

genTAcall(i) =

{
genTAcallin if inline representation is used
genTAcallexp

if explicit representation is used

We also define the auxiliary function loc : TA → Location that returns the
initial location associated with a TA stub generated for an instruction, edge :
TA→ Edge that returns the outgoing edges of the initial location of a generated
TA stub for an instruction, sync : Edge→ chanName that returns the channel
name for an edge, and Callees : i → M where i ∈ CallInst that provides the
set of potential receivers of a method call. Translating TIR to a Program NTA used
along with an explicit representation of the execution environment is performed
according to Definition 5.



Definition 5 (Explicit Representation Translation).
For translating simple instructions, we use

genTAsimexp
: Instruction→ TA = 〈L, l0, Σ,C,E, I〉

which is defined as:

genTAsimexp
(i) = 〈{li}, li, {jvm exec!}, ∅, E, ∅〉

where

E =
⋃

∀inxt∈
succ(i)

{〈
li

running[tID],jvm exec!,jvm inst:=JiK−−−−−−−−−−−−−−−−−−−−−−−−−→ loc(genTAinstr(inxt))

〉}

Method calling instructions are translated using

genTAcallexp
: Instruction→ TA = 〈L, l0, Σ,C,E, I〉

which is defined as:

genTAcallexp
(i) =〈{loc(genTAsimexp

(i)), lcall, lwait, lret}, loc(genTAsimexp
(i)),

{jvm exec!} ∪ {a!, a?|a ∈ chan(callees(i))}, ∅, E, I〉

where

E = edge(genTAsimexp(i))⋃
∀M∈

callees(i)

{〈
lcall

running[tID],chan(M)!−−−−−−−−−−−−−−−→ lwait

〉}
⋃

∀M∈
callees(i)

{〈
lwait

running[tID],chan(M)?−−−−−−−−−−−−−−−−→ lret

〉}

∪
{〈
lret

urgent−−−−→ loc(genTAinstr(inxt))
〉}

and

I = {〈lcall, execT ime == 0〉, 〈lret, execT ime == 0〉}

In Definition 5, the guard as generated by genTAsimexp
, ensures that the edge

can only be fired if the real-time task with ID tID is set to run as governed
by the scheduler. The urgent label means that the edge is fired immediately;
when being in lret, time is not allowed to progress and the edge is fired instan-
taneously. The update statement is used for communicating the instruction, i,
to the JVM NTA. Furthermore, to initiate the simulation of i, a synchronisation
action is initiated on the jvm exec channel. Whenever the JVM NTA is capable of
processing a new instruction, it receives on jvm exec. The TA stub generated



by genTAcallexp
makes a non-deterministic choice between all possible receivers

of the call by generating an outgoing edge with a synchronisation action to the
respective TA simulating the receiver. Afterwards, the process waits in lwait until
the simulation of the callee finishes at which point the process synchronises on
the same synchronisation channel, transferring control back to the caller.

For generating the Program NTA for use with an inline representation of the
execution environment, we add the function wcet : i→ N that returns the stat-
ically defined WCET for instruction i on the particular execution environment.
The translation is performed according to Definition 6.

Definition 6 (Inline Representation Translation).
Translating simple instructions is done using

genTAsimin
: Instruction→ TA = 〈L, l0, Σ,C,E, I〉

which is defined as:

genTAsimin(i) = 〈{li}, li, ∅, ∅, E, I〉

where

E =
⋃

∀inxt∈
succ(i)

{〈
li

execT ime==Jwcet(i)K,execT ime:=0−−−−−−−−−−−−−−−−−−−−−−−→ loc(genTAinstr(inxt))

〉}

and

I = {〈li, execT ime ≤ Jwcet(i)K && execT ime′ == running[tID]〉}

Translating method calling instructions is done using

genTAcallin : Instruction→ TA = 〈L, l0, Σ,C,E, I〉

which is defined as:

genTAcallin(i) =〈{loc(genTAsimin(i)), lwait}, loc(genTAsimin(i)),

{a!, a?|a ∈ chan(callees(i))}, ∅, E, I〉

where

E = edge(genTAsimin
(i))⋃

∀M∈
callees(i)

{〈
loc(genTAsimin(i)

execT ime==Jwcet(i)K,chan(M)!,execT ime:=0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ lwait

〉}
⋃

∀M∈
callees(i)

{〈
lwait

chan(M)?,execT ime:=0−−−−−−−−−−−−−−−→ loc(genTAinstr(succ(i))

〉}

Translation to an inline representation follows the same pattern as that for an
explicit representation. The notable difference is the inclusion of the instruction
execution times on the edges.



8 Correctness of Translation

In this section we conjecture that the translation of an SCJ application is correct.
The correctness is stipulated through a simulation relation between TIR and
Program NTA, relying on results from[18] proving the correctness of the translation
from Java to JBC and [6] proving simulation between JCB and CFG.

Conjecture 1. For each method m in an SCJ application, the TIR representation
of method m is in a simulation relation with the TA generated for m using
Definition 4 and the Explicit Representation Translation in Definition 5.

A proof of the above conjecture will follow the lines of [6]. There are two cases:

(1) The CFG of a method m can do a transition b
l−→ b′ whenever 〈b, l, b′〉 ∈ E

where i ∈ l and i ∈ simexp, then genTAsimexp
(i)

running[tID],jvm exec!,jvm inst:=JiK−−−−−−−−−−−−−−−−−−−−−−−−−→
lloc where lloc ∈ loc(genTAinstr(inxt)).
(2) The CFG of a method m can do a transitionb

l−→ b′ whenever 〈b, l, b′〉 ∈ E
where i ∈ l and i ∈ callexp then genTAcallin(i)

running[tID],jvm exec!,jvm inst:=JiK−−−−−−−−−−−−−−−−−−−−−−−−−→
lcall

running[tID],chan(M)!−−−−−−−−−−−−−−−→ lwait
running[tID],chan(M)?−−−−−−−−−−−−−−−−→ lret

urgent−−−−→ lloc where
lloc ∈ loc(genTAinstr(inxt)).

Conjecture 2. For each method m in an SCJ application, the Program TA gen-
erated for m using Definition 4 and the Explicit Representation Translation in
Definition 5 is in a simulation relation with the Program TA generated for m
using Definition 4 and the Implicit Representation Translation in Definition 6.

A proof of the above conjecture will establish a simulation between the Ex-
plicit Representation Translation and the Implicit Representation Translation,

noting that when genTAsimexp
(i)

running[tID],jvm exec!,jvm inst:=JiK−−−−−−−−−−−−−−−−−−−−−−−−−→ lloc where

lloc ∈ loc(genTAinstr(inxt)) then genTAsimin(i)
execT ime==Jwcet(i)K,execT ime:=0−−−−−−−−−−−−−−−−−−−−−−−→

l′loc where l′loc ∈ loc(genTAinstr(inxt)) for i ∈ simexp, and similarly matching
transitions can be found for i ∈ callexp.

9 Analyses and Optimisations

To cope with the inherent problem of state space explosion, our method adopts
a variety of analyses, optimisations, and transformations to reduce the size of
each state and the state space that needs exploration. All transformations and
optimisations are incorporated without affecting the soundness of our method.

Inlining TAs Uppaal uses the CCS parallel composition operator for allowing
interleaving of actions as well as allowing hand-shake synchronisations. For the
parallel composition, A1 ‖ A2 ‖ · · · ‖ An, the product TA necessarily has to be
constructed. This is entirely syntactical, but turns out to be computationally



expensive which is the reason why Uppaal computes the product TA on-the-
fly during verification. To lower the verification time even more, TetaSARTS
inlines TAs wherever possible prior to the verification to reduce the size of the
product TAs. Inlining TAs involves a series of steps. First a TA dependency
graph is built over how TetaSARTS simulates invocation of methods using
synchronisation channels. Thus Definition 7 only applies for the modeling ap-
proach adopted in TetaSARTS.

Definition 7 (TA Dependency Graph).
A TA dependency graph G = 〈V,E〉 is a DAG where the vertices, V , represent the
TAs of the NTA system, and edges, E ⊆ V ×V represent that a dependency exists
between two TAs. Let Ai where i ∈ {1, 2} be two TAs and let EAi denote the set of
edges in TA Ai. C denotes an arbitrary synchronisation channel. A dependency
among A1 and A2 is created when there exists two edges, {eAi

, e′Ai
} ∈ EAi

where
i ∈ {1, 2} if

eA1
= 〈lA1

gA1
,C!,uA1

,rA1−−−−−−−−−−→ l′A1
〉 e′A1

= 〈l′A1

C?−−→ l′′A1
〉

eA2
= 〈lA2

gA2
,C!,uA2

,rA2−−−−−−−−−−→ l′A2
〉 e′A2

= 〈l′A2

C?−−→ l′′A2
〉

where {eA1 , e
′
A1
, eA2 , e

′
A2
| sync(e) = C where e ∈ EA1 ∪ EA2}, that is C is a

channel only appearing on edges eA1
, e′A1

, eA2
and e′A2

in A1 and A2.

Assume that a dependency exists between the TAs A1 and A2 due to the
existence of edges eA1

, e′A1
, eA2

, e′A2
whose structure follows the definitions in

Definition 7. A new TA Ain is created such that Ain = A1 � A2 except that
{eA1 , e

′
A1
, eA2 , e

′
A2
} 6∈ EAin . In addition, two new edges are added to EAin :

einit = 〈l′A1

gA1
,τ,uA1−−−−−−−→ l′′A2

〉 eret = 〈l′A2

gA2
,τ,uA2−−−−−−−→ l′′A1

〉

If the option of inlining the instruction execution times in the Program NTA

is enabled, TetaSARTS is capable of reducing the state space by aggregating
edges that are fired sequentially according to Definition 8.

Definition 8 (Sequentially Executing Instructions).
Let i1, i2, . . . , in be the sequence of instructions following an execution path in
the program. i1, i2, . . . , in are sequentially executing if ∀ik s.t. 1 ≤ k ≤ n then
| succ(ik) |= 1

Edge aggregation is now performed according to Definition 9.

Definition 9 (Edge Aggregation). Let SeqInst be a set of sequentially exe-
cuting instructions according to Definition 8. The total execution of SeqInst is
then aggWCET =

∑
i∈SeqInst wcet(i).

Let SeqLoc = {li | i ∈ SeqInst} and let SeqEdges denote the set of edges
with source location l s.t. l ∈ SeqLoc and let A be the TA with locations L s.t.



SeqLoc ⊆ L and edges E s.t. SeqEdges ⊆ E. A is updated s.t. L = L \ SeqLoc
and E = E \ SeqEdges

Let l and l′ denote the first and last location in SeqLoc. eagg is a new edge

s.t. eagg = 〈l execT ime==JaggWCET K−−−−−−−−−−−−−−−−−→ l′〉. Furthermore, the invariants of A are
updated s.t. 〈l, execT ime ≤ JaggWCET K && execT ime′ == running[tID]〉

JVM NTA Specialisation Many embedded systems do not use floating point
arithmetic hence leaving out all the JBCs that handle doubles and floats. More-
over, many other JBCs are only rarely used. Due to this, our method employs an
analysis that conservatively estimates the set of JBCs the program is actually
using. The analysis traverses TIR and visits every instruction i. Whenever an
instruction i is visited such that i 6∈ JBCInstused, it is added to JBCInstused.
All TAi such that i 6∈ JBCInstused are removed from the final NTA.

Devirtualisation From a static viewpoint, the run-time type of an object can
be any subclass of that type. Therefore, naively, a virtual method call site is
modelled as a nondeterministic choice between all possible callees which, in cases
with large class hierarchies, contributes significantly to the size of the state space.

TetaSARTS employs static program analyses known from optimising com-
pilers to devirtualise virtual method calls or at least limit the amount of possibil-
ities of dynamically-dispatched methods. The methods are used when invoking
the callees function previously introduced. TetaSARTS makes available dif-
ferent approaches since the precision of devirtualisation comes at the cost of
increased NTA generation time:

Class Hierarchy Analysis (CHA) considers the declared type of the callee and
combines it with complete information about the class hierarchy. If a virtual
method call is made on method m where the declared type of the receiver is
denoted C and has subtypes {S1, S2, . . . , Sn}, then only C and the subtypes
that override m will be considered. [23]

Rapid Type Analysis (RTA) is an extension to CHA which combines the informa-
tion about globally instantiated types and intersects it with the class hierarchy
information about the callsite as obtained by CHA. [8]

Variable Type Analysis (VTA) makes a conservative estimate of the set of types
that may possibly reach each variable in methods. [46]

10 Evaluation

In this section, we demonstrate the applicability of TetaSARTS using rep-
resentative examples of real-time systems, and evaluate on the effects of the
optimisations. All results were obtained by running Uppaal on a machine with
an Intel Xeon X5670 @ 2.93 GHz and 32 GB of memory. The systems are:



Class Hierarchy consists of four classes forming a hierarchy of height four.
Each class overrides method compute() which performs a resource intensive
calculation. Eight real-time tasks call different implementations of compute().
It is used for showing the effect of employing receiver type analysis.

Sequential Computation is composed of ten real-time tasks performing cal-
culations using only a few conditional JBCs. This is used for demonstrating
the effect of edge aggregation.

Simple RTS consists of nine real-time tasks performing calculations using only
a few different JBCs. This system is used for demonstrating the effect of JVM
specialisation and inlining TAs.

Minepump is the classic text-book example of a minepump control system that
manages the operation of a water pump based on environmental conditions
such as water level and methane concentration.[17][12][26]

Real-Time Sorting Machine (RTSM) is an example of an embedded real-
time system that manages two motors for sorting coloured bricks based on
measurements from sensory equipment.[14]

MD5SCJ is based on five periodic tasks calculating the MD5 sum of a byte
array. The implementation of the MD5 task has been used in oSCJ [42].

For evaluating the effect of the optimisations, we have used an inline repre-
sentation of the JOP execution environment. The results are shown in Table 1.
As shown, all optimisations decrease the analysis time significantly. Especially

System Optimisations Analysis Time Mem. Usage

Class Hierarchy CHA 1m 44s 65 MB
Class Hierarchy RTA 1m 7s 52 MB
Class Hierarchy VTA 29s 37 MB
Simple RTS All 27s 70 MB

Simple RTS
No TA inlining
No JVM special.

3m 59s 360 MB

Seq. Computation All 35s 70 MB
Seq. Computation No edge aggr. 1m 2s 167 MB

Table 1: The effect of the optimisations.

inlining TAs and JVM specialisation are evidently of high importance. Edge
aggregation is also important and should be enabled whenever an inline repre-
sentation of the execution environment is used. Using VTA for devirtualisation
is also recommended. As shown, having an exact representation of the execution
environment yields long verification times and high memory demands. This was
also anticipated due the number of TAs and their complexity. Further results
can be found in [37, 35].

Table 2 shows the results of analysing representative examples of real-time
systems. The subscript indicates whether an explicit or an inline representation
of the execution environment is used.



System Exec. Env. Analysis Time Mem. Usage

RTSM JOPin 11s 19 MB
RTSM JOPexp 17m 19s 166 MB
Minepump JOPin 1s 12 MB
Minepump JOPexp 6m 18s 62 MB
Minepump HVMAV Rexp 15h 25m 16s 17933 MB

Table 2: Results obtained using TetaSARTS.

11 Conclusion

In this paper we have given an overview of the Safety Critical Java Profile and
its programming model based on tasks grouped in missions, encapsulating a
specific functionality or phase in the lifetime of a hard real-time system as a set
of schedulable entities. We have given an overview of two execution platforms
for SCJ, the JOP [39] and the HVM [45, 30] and we have given an overview of
the TetaSARTS tool for conducting schedulability analysis of JBC real-time
systems which is able to take into account the particular execution environ-
ment consisting of either a software implementation of the JVM and commodity
embedded hardware or a hardware implementation of the JVM. TetaSARTS
keeps a tight correspondence between the actual real-time system application
code and the model used for analysis. We have briefly summarized some of the
results based on this translation.

The main contribution is an elaboration on the theoretical underpinning
of the translation from Java programs to timed automata models conjecturing
that a simulation relation can be established between CFGs of methods in the
system and their representations as TA. We conjecture the overall correctness by
transitivity, relying on results from [18] proving the correctness of the translation
from Java to JBC and from [6] proving simulation between JCB and CFG.

Our approach of analyzing real programs by process algebraic methods fol-
lows in the footsteps of [43] where programs in the Occam language are analyzed
using the CSP process algebra and [16, 24] where Degano et. al. analyzed Mo-
bile Agent Programs written in the Higher Order Functional, Concurrent and
Distributed, programming language Facile [47].

Recently the Java language has been enhanced with anonymous higher order
functions in the form of lambda abstractions. This makes Java a full-fledged
higher order object oriented, functional and concurrent language. Furthermore,
even embedded JVM platforms, such as JOP and HVM now have support for
multi-core, and thus some level of true code migration incorporated. Thus we
expect that the work in [16, 24] will become extremely relevant in the analysis
of systems for the Internet-of-Things, as Java moves into this territory.
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